This study aimed to optimize process variables for the enhanced production of single-cell protein (SCP) using Trichoderma atroviride EGER23 from cassava peels through Response Surface Methodology (RSM). A Box-Behnken design was applied to investigate the influence of three key factors viz. moisture content (60.0% - 75.0%), pH (6.5 - 8.5), and incubation time (4 - 8 days) on protein content. A second-order polynomial model effectively explained the variation in experimental data and showed a strong correlation between the independent variables and the response. The optimized conditions (moisture content of 66.52%, pH of 6.50, and incubation time of 7.39 days) resulted in a maximum protein yield of 9.5% with a desirability of 91.66% after optimization. High moisture content lowered the protein yield by restricting oxygen transfer, whereas variations from the optimal pH inhibited the activity of enzymes involved in fungal metabolism. In addition, prolonging the fermentation period beyond the optimal period led to protein degradation rather than further accumulation. The optimization model showed that the optimization of process parameters maximizes Single Cell Protein production. The findings highlighted the potential of cassava peels as a sustainable substrate for microbial protein production, aligning with the circular economy strategies to enhance resource efficiency in food and feed production.
References
[1]
Lisboa, H.M., Nascimento, A., Arruda, A., Sarinho, A., Lima, J., Batista, L., et al. (2024) Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods, 13, Article 1846. https://doi.org/10.3390/foods13121846
[2]
Segovia-Hernández, J.G., Contreras-Zarazúa, G. and Ramírez-Márquez, C. (2023) Sustainable Design of Water-Energy-Food Nexus: A Literature Review. RSC Sustainability, 1, 1332-1353. https://doi.org/10.1039/d3su00110e
[3]
Nirmal, N., Anyimadu, C.F., Khanashyam, A.C., Bekhit, A.E.A. and Dhar, B.K. (2024) Alternative Protein Sources: Addressing Global Food Security and Environmental Sustainability. Sustainable Development. https://doi.org/10.1002/sd.3338
[4]
Pereira, A.G., Fraga-Corral, M., Garcia-Oliveira, P., Otero, P., Soria-Lopez, A., Cassani, L., et al. (2022) Single-Cell Proteins Obtained by Circular Economy Intended as a Feed Ingredient in Aquaculture. Foods, 11, Article 2831. https://doi.org/10.3390/foods11182831
[5]
Sharif, M., Zafar, M.H., Aqib, A.I., Saeed, M., Farag, M.R. and Alagawany, M. (2021) Single Cell Protein: Sources, Mechanism of Production, Nutritional Value and Its Uses in Aquaculture Nutrition. Aquaculture, 531, Article 735885. https://doi.org/10.1016/j.aquaculture.2020.735885
[6]
Bajić, B., Vučurović, D., Vasić, Đ., Jevtić-Mučibabić, R. and Dodić, S. (2022) Biotechnological Production of Sustainable Microbial Proteins from Agro-Industrial Residues and By-Products. Foods, 12, Article 107. https://doi.org/10.3390/foods12010107
[7]
Panghal, A., Munezero, C., Sharma, P. and Chhikara, N. (2019) Cassava Toxicity, Detoxification and Its Food Applications: A Review. Toxin Reviews, 40, 1-16. https://doi.org/10.1080/15569543.2018.1560334
[8]
Mukhtar, A., Latif, S., Barati, Z. and Müller, J. (2023) Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel. Applied Sciences, 13, Article 6340. https://doi.org/10.3390/app13106340
[9]
Aladegboye, O.J., Oguntayo, O.-D., Al-Ihekwaba, E., Daniel, T.E., Chiadighikaobi, P.C. and Ng’andu, P. (2022) Evaluation of Volumetric Properties of Cassava Peel Ash Modified Asphalt Mixtures. Civil Engineering Journal, 8, 2110-2124. https://doi.org/10.28991/CEJ-2022-08-10-07
[10]
Rogoski, W., Pereira, G.N., Cesca, K., de Oliveira, D. and de Andrade, C.J. (2023) An Overview on Pretreatments for the Production of Cassava Peels-Based Xyloligosaccharides: State of Art and Challenges. Waste and Biomass Valorization, 14, 2115-2131. https://doi.org/10.1007/s12649-023-02044-4
[11]
Schrenk, D., Bignami, M., Bodin, L., Chipman, J.K., del Mazo, J., Grasl‐Kraupp, B., et al. (2019) Evaluation of the Health Risks Related to the Presence of Cyanogenic Glycosides in Foods Other than Raw Apricot Kernels. EFSA Journal, 17, e05662. https://doi.org/10.2903/j.efsa.2019.5662
[12]
Chan, L.G., Cohen, J.L., Ozturk, G., Hennebelle, M., Taha, A.Y. and L. N. de Moura Bell, J.M. (2018) Bioconversion of Cheese Whey Permeate into Fungal Oil by Mucor Circinelloides. Journal of Biological Engineering, 12, Article No. 25. https://doi.org/10.1186/s13036-018-0116-5
[13]
Jeyakumar, E. and Lawrence, R. (2022) Microbial Fermentation for Reduction of Antinutritional Factors. In: Rai, A.K., Singh, S.P., Pandey, A., Larroche, C. and Soccol, C.R., Eds., Current Developments in Biotechnology and Bioengineering, Elsevier, 239-260. https://doi.org/10.1016/b978-0-12-823506-5.00012-6
[14]
Lima, P.C., Karimian, P., Johnston, E. and Hartley, C.J. (2024) The Use of Trichoderma Spp. for the Bioconversion of Agro-Industrial Waste Biomass via Fermentation: A Review. Fermentation, 10, Article 442. https://doi.org/10.3390/fermentation10090442
[15]
Nathan, V.K., Esther Rani, M., Rathinasamy, G., Dhiraviam, K.N. and Jayavel, S. (2014) Process Optimization and Production Kinetics for Cellulase Production by Trichoderma Viride VKF3. SpringerPlus, 3, Article No. 92. https://doi.org/10.1186/2193-1801-3-92
[16]
Druzhinina, I.S., Chenthamara, K., Zhang, J., Atanasova, L., Yang, D., Miao, Y., et al. (2018) Massive Lateral Transfer of Genes Encoding Plant Cell Wall-Degrading Enzymes to the Mycoparasitic Fungus Trichoderma from Its Plant-Associated Hosts. PLOS Genetics, 14, e1007322. https://doi.org/10.1371/journal.pgen.1007322
[17]
Kamal, M.M., Ali, M.R., Shishir, M.R.I., Saifullah, M., Haque, M.R. and Mondal, S.C. (2019) Optimization of Process Parameters for Improved Production of Biomass Protein from Aspergillus Niger Using Banana Peel as a Substrate. Food Science and Biotechnology, 28, 1693-1702. https://doi.org/10.1007/s10068-019-00636-2
[18]
Prastujati, A.U., Hilmi, M., Khusna, A., Sjofjan, O., Natsir, M.H. and Talitha, S.U. (2022) Optimization of Single Cell Protein (SCP) Production Using Saccharomyces Cerevisiae by Response Surface Methodology (RSM) on Cell Biomass and Protein Percentage. Proceedings of the International Conference on Improving Tropical Animal Production for Food Security (ITAPS 2021), Kendari, 20-21 November 2021, 483-489. https://doi.org/10.2991/absr.k.220309.093
[19]
Islam Shishir, M.R., Taip, F.S., Aziz, N.A., Talib, R.A. and Hossain Sarker, M.S. (2016) Optimization of Spray Drying Parameters for Pink Guava Powder Using RSM. Food Science and Biotechnology, 25, 461-468. https://doi.org/10.1007/s10068-016-0064-0
[20]
AOAC (2012) Official Methods of Analysis, Association of Official Analytical Chemists. 19th Edition, AOAC.
[21]
Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020) Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In: Barbosa-Cánovas, G.V., Fontana Jr., A.J., Schmidt, S.J. and Labuza, T.P., Eds., Water Activity in Foods: Fundamentals and Applications, John Wiley & Sons, Ltd., 323-355. https://doi.org/10.1002/9781118765982.ch14
[22]
Rajput, S.D., Pandey, N. and Keshavkant, S. (2024) Optimization Strategies for Enhanced Production of Single Cell Protein: Recent Advances and Perspectives. Reviews in Environmental Science and Bio/Technology, 23, 1015-1040. https://doi.org/10.1007/s11157-024-09706-2
[23]
Rashid, J.I.A., Samat, N. and Yusoff, W.M.W. (2011) Optimization of Temperature, Moisture Content and Inoculum Size in Solid State Fermentation to Enhance Mannanase Production by Aspergillus Terreus SUK-1 Using RSM. Pakistan Journal of Biological Sciences, 14, 533-539. https://doi.org/10.3923/pjbs.2011.533.539
[24]
Malik, D., Narayanasamy, N., Pratyusha, V.A., Thakur, J. and Sinha, N. (2023) Biological Roles of Water. In: Malik, D., Narayanasamy, N., Pratyusha, V.A., Thakur, J. and Sinha, N., Eds., Textbook of Nutritional Biochemistry, Springer Nature, 65-77. https://doi.org/10.1007/978-981-19-4150-4_3
[25]
Nolfi-Donegan, D., Braganza, A. and Shiva, S. (2020) Mitochondrial Electron Transport Chain: Oxidative Phosphorylation, Oxidant Production, and Methods of Measurement. Redox Biology, 37, Article 101674. https://doi.org/10.1016/j.redox.2020.101674
[26]
Bremer, E. and Krämer, R. (2019) Responses of Microorganisms to Osmotic Stress. Annual Review of Microbiology, 73, 313-334. https://doi.org/10.1146/annurev-micro-020518-115504
[27]
Lee, J.M., Hammarén, H.M., Savitski, M.M. and Baek, S.H. (2023) Control of Protein Stability by Post-Translational Modifications. Nature Communications, 14, Article No. 201. https://doi.org/10.1038/s41467-023-35795-8
[28]
López-Trujillo, J., Mellado-Bosque, M., Ascacio-Valdés, J.A., Prado-Barragán, L.A., Hernández-Herrera, J.A. and Aguilera-Carbó, A.F. (2023) Temperature and pH Optimization for Protease Production Fermented by Yarrowialipolytica from Agro-Industrial Waste. Fermentation, 9, Article 9. https://doi.org/10.3390/fermentation9090819
[29]
Sikorski, Z.E. (2018) Fennema’s Food Chemistry (Fifth Edition) Edited by Srinivasan Damodaran Kirk L. Parkin CRC Press, Boca Raton, Florida, 2017. 1107 pp. ISBN 9781482208122. Journal of Food Biochemistry, 42, e12483. https://doi.org/10.1111/jfbc.12483
[30]
Anyiam, P.N., Nwuke, C.P., Uhuo, E.N., Ije, U.E., Salvador, E.M., Mahumbi, B.M., et al. (2023) Effect of Fermentation Time on Nutritional, Antinutritional Factors and In-Vitro Protein Digestibility of Macrotermes Nigeriensis-Cassava Mahewu. Measurement: Food, 11, Article 100096. https://doi.org/10.1016/j.meafoo.2023.100096
[31]
Khorsandi, A. (2022) The Use of Solid-State Fermentation to Improve the Protein Quality, Functionality and Flavour of Pulse Protein Isolates. Master’s Thesis, University of Saskatchewan. https://harvest.usask.ca/handle/10388/13966
[32]
Formenti, L.R., Nørregaard, A., Bolic, A., Hernandez, D.Q., Hagemann, T., Heins, A., et al. (2014) Challenges in Industrial Fermentation Technology Research. Biotechnology Journal, 9, 727-738. https://doi.org/10.1002/biot.201300236
[33]
Mengesha, Y., Tebeje, A. and Tilahun, B. (2022) A Review on Factors Influencing the Fermentation Process of Teff (Eragrostis Teff) and Other Cereal-Based Ethiopian Injera. International Journal of Food Science, 2022, Article ID: 4419955. https://doi.org/10.1155/2022/4419955
[34]
Teo, H.L., Wahab, R.A., Zainal-Abidin, M.H., Mark-Lee, W.F., Huyop, F., Susanti, E., et al. (2024) Statistically Assisted Optimisation for the Simultaneous Production of Trichoderma Harzianum and Aspergillus Fumigatus Cellulolytic Enzymes. Biomass Conversion and Biorefinery, 15, 3827-3843. https://doi.org/10.1007/s13399-023-05222-5
[35]
Karaosmanoglu Gorgec, F. and Karapinar, I. (2019) Biohydrogen Production from Hydrolyzed Waste Wheat by Dark Fermentation in a Continuously Operated Packed Bed Reactor: The Effect of Hydraulic Retention Time. International Journal of Hydrogen Energy, 44, 136-143. https://doi.org/10.1016/j.ijhydene.2018.08.155
[36]
Thaweewong, P. and Anuntagool, J. (2023) Change in Free Cyanide Content of Bitter Cassava during Incubation and Drying and Physical Properties of Dry-Milled Cassava Flour. Food and Bioproducts Processing, 138, 139-149. https://doi.org/10.1016/j.fbp.2023.01.009
[37]
Ndubuisi, N.D. and Chidiebere, A.C.U. (2018) Cyanide in Cassava: A Review. International Journal of Genomics and Data Mining, 2, Article 118. https://www.gavinpublishers.com/article/view/cyanide-in-cassava-a-review
[38]
Hawashi, M., Aparamarta, H., Widjaja, T. and Gunawan, S. (2019) Optimization of Solid State Fermentation Conditions for Cyanide Content Reduction in Cassava Leaves Using Response Surface Methodology. International Journal of Technology, 10, 624-633. https://doi.org/10.14716/ijtech.v10i3.2923
[39]
Terefe, Z.K., Omwamba, M. and Nduko, J.M. (2022) Effect of Microbial Fermentation on Nutritional and Antinutritional Contents of Cassava Leaf. Journal of Food Safety, 42, e12969. https://doi.org/10.1111/jfs.12969
[40]
Wambua, M., Mulwa, R.M.S., Arama, P.F., Atieno, S.A. and Ogendo, J.O. (2020) Evaluation of Popular Cassava Varieties for Yield and Cyanide Content under ASAL Conditions in Kenya. African Crop Science Journal, 28, 71-82. https://doi.org/10.4314/acsj.v28i1.6s
[41]
Okoth, R.A., Matofari, J.W. and Nduko, J.M. (2022) Effectiveness of Levilactobacillus Brevis Fermentation on Antinutrients and Protein Quality of Leaves of Selected Cassava Varieties. Applied Food Research, 2, Article 100134. https://doi.org/10.1016/j.afres.2022.100134
[42]
López-Gómez, J.P. and Venus, J. (2021) Potential Role of Sequential Solid-State and Submerged-Liquid Fermentations in a Circular Bioeconomy. Fermentation, 7, Article 76. https://doi.org/10.3390/fermentation7020076
[43]
Bratosin, B.C., Darjan, S. and Vodnar, D.C. (2021) Single Cell Protein: A Potential Substitute in Human and Animal Nutrition. Sustainability, 13, Article 9284. https://doi.org/10.3390/su13169284
[44]
Ray, R.C., Aguilar-Rivera, N. and Sooch, B.B. (2024) Prospective for Biorefineries Development from Roots, Tubers, and Bulb Crop Wastes and By-Products: Value Addition and Circular Economy. In: Ray, R.C., Ed., Roots, Tubers, and Bulb Crop Wastes: Management by Biorefinery Approaches, Springer Nature, 351-374. https://doi.org/10.1007/978-981-99-8266-0_16
[45]
Tsatsaragkou, K., Mandala, I. and Stoforos, N.G. (2023) Fermentation Kinetics of Gluten-Free Breads: The Effect of Carob Fraction and Water Content. Foods, 12, Article 1809. https://doi.org/10.3390/foods12091809
[46]
Vauris, A., Valcauda, S., Husson, F. and Coninck, J.D. (2022) A Novel Method to Assess Heat Transfer and Impact of Relevant Physicochemical Parameters for the Scaling up of Solid State Fermentation Systems. Biotechnology Reports, 36, e00764. https://doi.org/10.1016/j.btre.2022.e00764
[47]
Finkler, A.T.J., Weber, M.Z., Fuchs, G.A., Scholz, L.A., de Lima Luz Jr, L.F., Krieger, N., et al. (2021) Estimation of Heat and Mass Transfer Coefficients in a Pilot Packed-Bed Solid-State Fermentation Bioreactor. Chemical Engineering Journal, 408, Article 127246. https://doi.org/10.1016/j.cej.2020.127246
[48]
Moresi, M. (2025) Design and Operation of a Multifunctional Pilot-Scale Bioreactor for Enhanced Aerobic Fermentation. Fermentation, 11, Article 101. https://doi.org/10.3390/fermentation11020101
[49]
Abdur Razzak, S., Bahar, K., Islam, K.M.O., Haniffa, A.K., Faruque, M.O., Hossain, S.M.Z., et al. (2024) Microalgae Cultivation in Photobioreactors: Sustainable Solutions for a Greener Future. Green Chemical Engineering, 5, 418-439. https://doi.org/10.1016/j.gce.2023.10.004
[50]
Sillman, J., Uusitalo, V., Ruuskanen, V., Ojala, L., Kahiluoto, H., Soukka, R., et al. (2020) A Life Cycle Environmental Sustainability Analysis of Microbial Protein Production via Power-to-Food Approaches. The International Journal of Life Cycle Assessment, 25, 2190-2203. https://doi.org/10.1007/s11367-020-01771-3
[51]
Aidoo, R., Kwofie, E.M., Adewale, P., Lam, E. and Ngadi, M. (2023) Overview of Single Cell Protein: Production Pathway, Sustainability Outlook, and Digital Twin Potentials. Trends in Food Science & Technology, 138, 577-598. https://doi.org/10.1016/j.tifs.2023.07.003
[52]
Järviö, N., Maljanen, N., Kobayashi, Y., Ryynänen, T. and Tuomisto, H.L. (2021) An Attributional Life Cycle Assessment of Microbial Protein Production: A Case Study on Using Hydrogen-Oxidizing Bacteria. Science of The Total Environment, 776, Article 145764. https://doi.org/10.1016/j.scitotenv.2021.145764
[53]
Nadathur, S.R., Wanasundara, J.P.D. and Scanlin, L. (2017) Proteins in the Diet. In: Nadathur, S.R., Wanasundara, J.P.D. and Scanlin, L., Eds., Sustainable Protein Sources, Academic Press, 1-19. https://doi.org/10.1016/b978-0-12-802778-3.00001-9
[54]
Ritchie, H., Rosado, P. and Roser, M. (2022) Environmental Impacts of Food Production. Our World in Data. https://ourworldindata.org/environmental-impacts-of-food
[55]
Poore, J. and Nemecek, T. (2018) Reducing Food’s Environmental Impacts through Producers and Consumers. Science, 360, 987-992. https://doi.org/10.1126/science.aaq0216