全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

茶皂素对真菌液体发酵产纤维素酶的影响及酶学特性研究
Study on the Effect of Tea Saponin on Fungal Liquid Fermentation to Produce Cellulase and Its Enzymatic Characteristics

DOI: 10.12677/hjas.2025.155076, PP. 616-625

Keywords: 茶皂素,厚垣镰孢霉,酶学性质,酶活,纤维素酶
Tea Saponin
, Fusarium oxysporum, Enzymatic Characteristics, Enzyme Activity, Cellulase

Full-Text   Cite this paper   Add to My Lib

Abstract:

本实验对厚垣镰孢霉HML278采用液体发酵产纤维素酶,加入0.2%、0.4%、0.6%、0.8%、1.0%不同浓度的茶皂素,探究茶皂素对其产纤维素酶的影响。实验结果显示,加入0.6%浓度的茶皂素的纤维素酶活性最高。在酶学特性研究中,酶的最适温度为60℃,最适pH为6.4。在金属离子对酶活性的探究中,发现Li+、K+、Ca2+、Mn2+、Zn2+、Fe3+对酶促反应具有促进作用,其中Ca2+、Mn2+对酶促反应的促进作用最强;而Co2+、Al3+对酶促反应具有抑制作用。
This experiment used liquid fermentation to produce cellulase from Fusarium graminearum HML278, and added tea saponin at different concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% to investigate the effect of tea saponin on its cellulase production. The experimental results showed that the cellulase activity was highest when 0.6% concentration of tea saponin was added. In the study of enzymatic characteristics, the optimal temperature and pH for the enzyme are 60?C and 6.4, respectively. In the exploration of metal ions on enzyme activity, it was found that Li+, K+, Ca2+, Mn2+, Zn2+, and Fe3+ have a promoting effect on enzymatic reactions, among which Ca2+ and Mn2+ have the strongest promoting effect on enzymatic reactions; Co2+ and Al3+ have inhibitory effects on enzymatic reactions.

References

[1]  Alsahag, M., Alisaac, A., Al-Hazmi, G.A.A., Pashameah, R.A., Attar, R.M.S., Saad, F.A., et al. (2023) Preparation of Carboxymethyl Cellulose/Polyvinyl Alcohol Wound Dressing Composite Immobilized with Anthocyanin Extract for Colorimetric Monitoring of Wound Healing and Prevention of Wound Infection. International Journal of Biological Macromolecules, 224, 233-242.
https://doi.org/10.1016/j.ijbiomac.2022.10.119
[2]  Chettri, D. and Verma, A.K. (2024) Statistical Optimization of Cellulase Production from Bacillus sp. YE16 Isolated from Yak Dung of the Sikkim Himalayas for Its Application in Bioethanol Production Using Pretreated Sugarcane Bagasse. Microbiological Research, 281, Article ID: 127623.
https://doi.org/10.1016/j.micres.2024.127623
[3]  赵鑫, 张红, 门中华, 等. 纤维素酶的研究与应用进展[J]. 化学与生物工程, 2023, 40(9): 1-9.
[4]  Sarangthem, I., Rajkumari, L., Ngashangva, N., Nandeibam, J., Yendrembam, R.B.S. and Mukherjee, P.K. (2023) Isolation and Characterization of Bacteria from Natural Hot Spring and Insights into the Thermophilic Cellulase Production. Current Microbiology, 80, Article No. 64.
https://doi.org/10.1007/s00284-022-03168-x
[5]  Iyyappan, J., Pravin, R., Al-Ghanim, K.A., Govindarajan, M., Nicoletti, M. and Baskar, G. (2023) Dual Strategy for Bioconversion of Elephant Grass Biomass into Fermentable Sugars Using Trichoderma Reesei towards Bioethanol Production. Bioresource Technology, 374, Article ID: 128804.
https://doi.org/10.1016/j.biortech.2023.128804
[6]  Gomes, J. and Jun, C. (2022) Development of Microalgae-based Biofuels as a Viable Green Energy Source: Challenges and Future Perspectives Mathushika. Biointerface Research in Applied Chemistry, 12, 3849-3882.
[7]  Rajnish, K.N., Samuel, M.S., John J, A., Datta, S., Chandrasekar, N., Balaji, R., et al. (2021) Immobilization of Cellulase Enzymes on Nano and Micro-Materials for Breakdown of Cellulose for Biofuel Production—A Narrative Review. International Journal of Biological Macromolecules, 182, 1793-1802.
https://doi.org/10.1016/j.ijbiomac.2021.05.176
[8]  广西: 蔗糖产量连续三年稳定在600万吨以上[J]. 中国食品, 2020(9): 63.
[9]  Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N. and Aminabhavi, T.M. (2021) Biomass Utilization and Production of Biofuels from Carbon Neutral Materials. Environmental Pollution, 276, Article ID: 116731.
https://doi.org/10.1016/j.envpol.2021.116731
[10]  Kroukamp, H., den Haan, R., la Grange, D.C., Sibanda, N., Foulquié‐Moreno, M.R., Thevelein, J.M., et al. (2017) Strain Breeding Enhanced Heterologous Cellobiohydrolase Secretion by saccharomyces Cerevisiae in a Protein Specific Manner. Biotechnology Journal, 12, Article ID: 1700346.
https://doi.org/10.1002/biot.201700346
[11]  Qiao, J., Cui, H., Wang, M., Fu, X., Wang, X., Li, X., et al. (2022) Integrated Biorefinery Approaches for the Industrialization of Cellulosic Ethanol Fuel. Bioresource Technology, 360, Article ID: 127516.
https://doi.org/10.1016/j.biortech.2022.127516
[12]  Vieira, C.F.D.S., Codogno, M.C., Maugeri Filho, F., Maciel Filho, R. and Mariano, A.P. (2021) Sugarcane Bagasse Hydrolysates as Feedstock to Produce the Isopropanol-Butanol-Ethanol Fuel Mixture: Effect of Lactic Acid Derived from Microbial Contamination on Clostridium Beijerinckii DSM 6423. Bioresource Technology, 319, Article ID: 124140.
https://doi.org/10.1016/j.biortech.2020.124140
[13]  Ma, K., Zhang, P., Zhao, J. and Qin, Y. (2025) Discovery of a Novel Translation-Machinery-Associated Protein That Positively Correlates with Cellulase Production. Biotechnology for Biofuels and Bioproducts, 18, Article No. 20.
https://doi.org/10.1186/s13068-025-02624-7
[14]  Gao, L., Jiang, Y., Hong, K., Chen, X. and Wu, X. (2023) Glycosylation of Cellulase: A Novel Strategy for Improving Cellulase. Critical Reviews in Biotechnology, 44, 191-201.
https://doi.org/10.1080/07388551.2022.2144117
[15]  Heng, S., Sutheeworapong, S., Wangnai, C., Champreda, V., Kosugi, A., Ratanakhanokchai, K., et al. (2024) Hydrolysis of Ionic Liquid-Treated Substrate with an Iocasia Fonsfrigidae Strain SP3-1 Endoglucanase. Applied Microbiology and Biotechnology, 108, Article No. 63.
https://doi.org/10.1007/s00253-023-12918-1
[16]  Moya, E.B., Syhler, B., Dragone, G. and Mussatto, S.I. (2024) Tailoring a Cellulolytic Enzyme Cocktail for Efficient Hydrolysis of Mildly Pretreated Lignocellulosic Biomass. Enzyme and Microbial Technology, 175, Article ID: 110403.
https://doi.org/10.1016/j.enzmictec.2024.110403
[17]  Qin, Y., He, H., Li, N., Ling, M. and Liang, Z. (2010) Isolation and Characterization of a Thermostable Cellulase-Producing Fusarium chlamydosporum and Characterization of the Cellulolytic Enzymes. World Journal of Microbiology and Biotechnology, 26, 1991-1997.
https://doi.org/10.1007/s11274-010-0383-x
[18]  Qin, Y., Li, Q., Luo, F., Fu, Y. and He, H. (2020) One-Step Purification of Two Novel Thermotolerant β-1,4-Glucosidases from a Newly Isolated Strain of Fusarium chlamydosporum HML278 and Their Characterization. AMB Express, 10, Article No. 182.
https://doi.org/10.1186/s13568-020-01116-1
[19]  贾林林, 李洪安, 邓泽元, 等. 茶皂素的提取、纯化及其表面活性研究[J/OL]. 天然产物研究与开发: 1-16.
http://kns.cnki.net/kcms/detail/51.1335.q.20250307.0959.002.html, 2025-05-07.
[20]  黄青青, 潘凤然, 廖燕科, 等. 茶皂素与鼠李糖脂复配的表面活性增效作用[J]. 湖北农业科学, 2025, 64(2): 21-26+50.
[21]  何海燕, 黄舒琳, 李东霖, 等. 产农用抗生素的菌种筛选鉴定及活性产物的初步研究[J]. 饲料研究, 2021, 44(18): 67-72.
[22]  廖鑫琳, 郭鑫, 杨季学, 等. 拮抗青枯雷尔氏菌的放线菌筛选及其防病作用[J]. 中国农业科学, 2024, 57(7): 1319-1334.
[23]  刘秀华. 纤维弧菌低温纤维素酶的分离纯化及性质探讨[D]: [硕士学位论文]. 济南: 山东大学, 2007.
[24]  郝志军, 李忠兴. 青霉NXP25纤维素酶的产生及性质[J]. 微生物学通报, 2002, 29(1): 64-66.
[25]  姜欣彤. 磷酸化玉木耳多糖脂质体制备及其生物活性的研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2024.
[26]  冉松. 产木质纤维素酶菌株的筛选应用及机理研究[D]: [硕士学位论文]. 株洲: 湖南工业大学, 2023.
[27]  彭洪草, 许雪芹, 王晓凡, 等. 以麦秸秆综纤维素快速糖化液为碳源的L-乳酸发酵条件研究[J]. 中国酿造, 2025, 44(2): 256-260.
[28]  鲍飞. 纤维素降解细菌的筛选、产酶条件优化及内切葡聚糖酶基因表达[D]: [硕士学位论文]. 扬州: 扬州大学, 2024.
[29]  吴日帮, 陈晨, 方博文, 周其洋. 米曲霉蛋白酶基因与酶学特性研究进展[J]. 中国酿造, 2024, 43(4): 8-13.
[30]  张秀琼. 植物乳植杆菌HQ-3基因组分析及其重组β-半乳糖苷酶异源表达、酶学特性研究[D]: [硕士学位论文]. 雅安: 四川农业大学, 2024.
[31]  冯婷婷. 理性设计提升D-阿洛酮糖3-差向异构酶的稳定性及催化活性[D]: [硕士学位论文]. 南宁: 广西大学, 2024.
[32]  张东. GH11家族木聚糖酶的筛选、抗抑制蛋白改造及应用研究[D]: [博士学位论文]. 无锡: 江南大学, 2024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133