全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微量紫外–可见分光光度法测定阳离子脂质体中MicroRNA的含量
Determination of MicroRNA in Cationic Liposomes by Micro UV Spectrophotometry

DOI: 10.12677/hjmce.2025.132018, PP. 168-175

Keywords: 阳离子脂质体,MicroRNA,微量紫外–可见分光光度计,含量测定,标准曲线
Cationic Liposome
, MicroRNA, Micro UV-Vis Spectrophotometer, Content Determination, Standard Curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:建立以硬质胺制备载MicroRNA阳离子脂质体中RNA含量测定的方法。方法:采用Q5000微量紫外–可见分光光度计,检测波长为260 nm,进行标准曲线绘制,精密度,重复性,稳定性及回收率等考察,建立可靠的、灵敏的RNA含量测定方法。结果:得到MicroRNA的线性回归方程:Y = 1.0378X ? 4.054 6,(R2 = 0.9984),在3.32~1091.22 ng/μL范围内具有良好的线性关系,精密度RSD值为0.41%,重复性RSD值为3.62%,稳定性RSD值为0.63%,加样回收率平均值为99.80%,RSD值为1.81%。阳离子脂质体中MicroRNA含量为200.73 ± 10.31 ng/μL。结论:本实验方法简便准确、重复性好、灵敏度高、含量测定方法稳定可行,适用于阳离子脂质体中MicroRNA的含量测定。
Objective: To establish a method for the determination of RNA in MicroRNA cationic liposomes prepared with Stearic amine. Methods: A Q5000 UV-visible spectrophotometer was used with the detection wavelength of 260 nm, and the standard curve drawing, precision, repeatability, stability and recovery were investigated to establish a reliable and sensitive method for the determination of RNA content. Results: The linear regression equation for MicroRNA was obtained: Y = 1.0378X ? 4.0546, (R2 = 0.9984), with good linearity in the range of 3.32~1091.22 ng/μL, precision RSD value of 0.41%, repeatability RSD value of 3.62%, stability RSD value of 0.63%, mean spiked recovery of 99.80%, and the RSD value was 1.81%. The content of MicroRNA in cationic liposomes was 200.73 ± 10.31 ng/μL. Conclusion: The established present experimental method was simple, accurate, reproducible, sensitive, stable and could be used for the determination of MicroRNA in cationic liposomes.

References

[1]  Jiménez-Morales, J.M., Hernández-Cuenca, Y.E., Reyes-Abrahantes, A., Ruiz-García, H., Barajas-Olmos, F., García-Ortiz, H., et al. (2022) MicroRNA Delivery Systems in Glioma Therapy and Perspectives: A Systematic Review. Journal of Controlled Release, 349, 712-730.
https://doi.org/10.1016/j.jconrel.2022.07.027
[2]  Paul, A., Muralidharan, A., Biswas, A., Kamath, B.V., Joseph, A. and Alex, A.T. (2022) siRNA Therapeutics and Its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OpenNano, 7, Article ID: 100063.
https://doi.org/10.1016/j.onano.2022.100063
[3]  Cai, W., Liu, J., Zheng, L., Xu, Z., Chen, J., Zhong, J., et al. (2021) Study on the Anti-Infection Ability of Vancomycin Cationic Liposome Combined with Polylactide Fracture Internal Fixator. International Journal of Biological Macromolecules, 167, 834-844.
https://doi.org/10.1016/j.ijbiomac.2020.11.039
[4]  Yang, S., Tang, Q., Chen, L., Chang, J., Jiang, T., Zhao, J., et al. (2020) Cationic Lipid‐Based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angewandte Chemie International Edition, 59, 18087-18094.
https://doi.org/10.1002/anie.202009572
[5]  Alexis, F., Pridgen, E., Molnar, L.K. and Farokhzad, O.C. (2008) Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Molecular Pharmaceutics, 5, 505-515.
https://doi.org/10.1021/mp800051m
[6]  Yadav, K., Singh, D., Singh, M.R. and Pradhan, M. (2020) Multifaceted Targeting of Cationic Liposomes via Co-Delivery of Anti-Il-17 siRNA and Corticosteroid for Topical Treatment of Psoriasis. Medical Hypotheses, 145, Article ID: 110322.
https://doi.org/10.1016/j.mehy.2020.110322
[7]  Fotoran, W.L., Kleiber, N., Glitz, C. and Wunderlich, G. (2020) A DNA Vaccine Encoding Plasmodium falciparum PfRH5 in Cationic Liposomes for Dermal Tattooing Immunization. Vaccines, 8, Article 619.
https://doi.org/10.3390/vaccines8040619
[8]  徐明明, 郑璐侠, 王自强, 等. 注射用核糖核酸的含量测定方法比较[J]. 中国医药工业杂志, 2016, 47(11): 1436-1441.
[9]  Jia, X., Liu, Y., Wagner, A.M., Chen, M., Zhao, Y., Smith, K.J., et al. (2021) Enabling Online Determination of the Size-Dependent RNA Content of Lipid Nanoparticle-Based RNA Formulations. Journal of Chromatography B, 1186, Article ID: 123015.
https://doi.org/10.1016/j.jchromb.2021.123015
[10]  张再平, 吴小曼, 石蓓佳, 等. 反相离子对色谱法测定注射用核糖核酸酶解产物中的5’-核苷酸[J]. 中南药学, 2013, 11(3): 194-198.
[11]  Hua, J. and Huang, K.L. (2010) Optimization by Orthogonal Array Design of Ion-Pair HPLC Separation of the Enzymatic Hydrolysis Products of Yeast RNA. Chinese Chemical Letters, 21, 1453-1456.
https://doi.org/10.1016/j.cclet.2010.07.002
[12]  郑冬妮. 紫外-可见分光光度计测定食品中亚硝酸盐含量的不确定度评定[J]. 食品界, 2017(3): 88-89.
[13]  Yao, D.B., Chi, D.F., Yu, J., et al. (2009) An Improved Method for Extraction of Nucleic acid from Coleopteran Insects. Journal of Northeast Forestry University, 37, 86-88. (In Chinese)
[14]  陈怡, 张辉, 邓超. 醋酸氢化可的松纯度标准物质的定值及不确定度分析[J]. 化学试剂, 2018, 40(3): 261-268.
[15]  Mergny, J. (2005) Thermal Difference Spectra: A Specific Signature for Nucleic Acid Structures. Nucleic Acids Research, 33, e138.
https://doi.org/10.1093/nar/gni134
[16]  Bryant, S. and Manning, D.L. (1998) Formaldehyde Gel Electrophoresis of Total RNA. In: Rapley, R. and Manning, D.L., Eds., RNA Isolation and Characterization Protocols, Humana Press, 69-72.
https://doi.org/10.1385/0-89603-494-1:69
[17]  Farrell, R.E. (2017) Electrophoresis of RNA. In: Farrell Jr., R.E., Ed., RNA Methodologies, Elsevier, 383-426.
https://doi.org/10.1016/b978-0-12-804678-4.00013-0
[18]  Sharma, S., Mazumdar, S., Italiya, K.S., Date, T., Mahato, R.I., Mittal, A., et al. (2018) Cholesterol and Morpholine Grafted Cationic Amphiphilic Copolymers for Mirna-34a Delivery. Molecular Pharmaceutics, 15, 2391-2402.
https://doi.org/10.1021/acs.molpharmaceut.8b00228
[19]  孟月, 王丹, 王雪蕾, 郭晓茹, 夏桂民. 建立共载米铂与核酸miR-34a阳离子脂质体中miR-34a的含量测定方法[J]. 中国医药生物技术, 2020, 15(3): 235-239.
[20]  Liu, X., Xu, G.M., Guo, J.F., et al. (2008) A Method for Quantification of Double Strand DNA Using SYBR Green I Dye. China Biotechnology, 28, 55-60.
[21]  沈雁, 涂家生, 庞卉, 朱家壁. 凝胶电泳法及荧光光度法测定siRNA阳离子脂质体的含量和包封率[J]. 药学学报, 2009, 44(4): 430-435.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133