|
Pure Mathematics 2025
BBM方程在Besov空间中的全局适定性
|
Abstract:
本文研究了Benjamin-Bona-Mahony (BBM)方程在非齐次Besov空间
中的全局适定性。首先用了压缩映射原理证明了当
及
(或
,
及
)时,BBM方程在
中局部适定的。接着,用高低频分解技巧及算子半群理论证明了当
,
时,BBM方程在
中全局适定。
In this study, we devoted to the global well-posedness for the Benjamin-Bona-Mahony (BBM) equation in the Nonhomogeneous Besov spaces
[1] | Benjamin, T.B., Bona, J.L. and Mahony, J.J. (1972) Model Equations for Long Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal Society, 272, 47-78. |
[2] | Korteweg, D.J. and de Vries, G. (1895) XLI. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 422-443. https://doi.org/10.1080/14786449508620739 |
[3] | Avrin, J. (1987) The Generalized Benjamin-Bona-Mahony Equation in N with Singular Initial Data. Nonlinear Analysis: Theory, Methods & Applications, 11, 139-147. https://doi.org/10.1016/0362-546x(87)90032-0 |
[4] | Bourgain, J. (1993) Fourier Transform Restriction Phenomena for Certain Lattice Subsets and Applications to Nonlinear Evolution Equations. Geometric and Functional Analysis, 3, 107-156. https://doi.org/10.1007/bf01896020 |
[5] | Bourgain, J. (1998) Refinements of Strichartz’ Inequality and Applications to 2D-NLS with Critical Nonlinearity. International Mathematics Research Notices, 1998, 253-283. https://doi.org/10.1155/s1073792898000191 |
[6] | Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. (2003) Sharp Global Well-Posedness for KDV and Modified KDV on and . Journal of the American Mathematical Society, 16, 705-749. https://doi.org/10.1090/s0894-0347-03-00421-1 |
[7] | Bona, J. and Tzvetkov, N. (2009) Sharp Well-Posedness Results for the BBM Equation. Discrete & Continuous Dynamical Systems—A, 23, 1241-1252. https://doi.org/10.3934/dcds.2009.23.1241 |
[8] | Panthee, M. (2011) On the Ill-Posedness Result for the BBM Equation. Discrete & Continuous Dynamical Systems—A, 30, 253-259. https://doi.org/10.3934/dcds.2011.30.253 |
[9] | Roumégoux, D. (2010) A Symplectic Non-Squeezing Theorem for BBM Equation. Dynamics of Partial Differential Equations, 7, 289-305. https://doi.org/10.4310/dpde.2010.v7.n4.a1 |
[10] | Wang, M. (2016) Sharp Global Well-Posedness of the BBM Equation in Type Sobolev Spaces. Discrete and Continuous Dynamical Systems, 36, 5763-5788. https://doi.org/10.3934/dcds.2016053 |
[11] | Banquet, C. and Villamizar-Roa, É.J. (2021) Time-decay and Strichartz Estimates for the BBM Equation on Modulation Spaces: Existence of Local and Global Solutions. Journal of Mathematical Analysis and Applications, 498, Article ID: 124934. https://doi.org/10.1016/j.jmaa.2021.124934 |
[12] | Wang, M. (2022) Cauchy Problem for the BBM Equation in . Applied Mathematics Letters, 132, Article ID: 108119. https://doi.org/10.1016/j.aml.2022.108119 |
[13] | Bona, J.L., Pritchard, W.G. and Scott, L.R. (1985) Numerical Schemes for a Model for Nonlinear Dispersive Waves. Journal of Computational Physics, 60, 167-186. https://doi.org/10.1016/0021-9991(85)90001-4 |
[14] | Angulo, J., Scialom, M. and Banquet, C. (2011) The Regularized Benjamin-Ono and BBM Equations: Well-Posedness and Nonlinear Stability. Journal of Differential Equations, 250, 4011-4036. https://doi.org/10.1016/j.jde.2010.12.016 |
[15] | Olver, P.J. (1979) Euler Operators and Conservation Laws of the BBM Equation. Mathematical Proceedings of the Cambridge Philosophical Society, 85, 143-160. https://doi.org/10.1017/s0305004100055572 |
[16] | Hamdi, S., Enright, W.H., Schiesser, W.E. and Gottlieb, J.J. (2004) Exact Solutions and Invariants of Motion for General Types of Regularized Long Wave Equations. Mathematics and Computers in Simulation, 65, 535-545. https://doi.org/10.1016/j.matcom.2004.01.015 |
[17] | Rosier, L. and Zhang, B. (2013) Unique Continuation Property and Control for the Benjamin-Bona-Mahony Equation on a Periodic Domain. Journal of Differential Equations, 254, 141-178. https://doi.org/10.1016/j.jde.2012.08.014 |
[18] | Hong, C. and Ponce, G. (2024) On Special Properties of Solutions to the Benjamin-Bona-Mahony Equation. Journal of Differential Equations, 393, 321-342. https://doi.org/10.1016/j.jde.2024.02.021 |
[19] | Fonseca, G., Riaño, O. and Rodriguez-Blanco, G. (2025) On the Persistence Properties for the Fractionary BBM Equation with Low Dispersion in Weighted Sobolev Spaces. Nonlinear Analysis, 250, Article ID: 113653. https://doi.org/10.1016/j.na.2024.113653 |
[20] | Wang, M. (2014) Long Time Dynamics for a Damped Benjamin-Bona-Mahony Equation in Low Regularity Spaces. Nonlinear Analysis: Theory, Methods & Applications, 105, 134-144. https://doi.org/10.1016/j.na.2014.04.013 |
[21] | Wang, M. (2024) Global Attractor for the Damped BBM Equation in the Sharp Low Regularity Space. Zeitschrift für angewandte Mathematik und Physik, 75, Article No. 142. https://doi.org/10.1007/s00033-024-02288-7 |
[22] | Wang, M. (2023) Well Posedness and Global Attractors for the 3D Periodic BBM Equation Below the Energy Space. Journal of Dynamics and Differential Equations, 36, 3599-3621. https://doi.org/10.1007/s10884-023-10253-7 |
[23] | Chen, P., Wang, B., Wang, R. and Zhang, X. (2022) Multivalued Random Dynamics of Benjamin-Bona-Mahony Equations Driven by Nonlinear Colored Noise on Unbounded Domains. Mathematische Annalen, 386, 343-373. https://doi.org/10.1007/s00208-022-02400-0 |
[24] | Dell’Oro, F., Goubet, O., Mammeri, Y. and Pata, V. (2020) Global Attractors for the Benjamin-Bona-Mahony Equation with Memory. Indiana University Mathematics Journal, 69, 749-783. https://doi.org/10.1512/iumj.2020.69.7906 |
[25] | Bahouri, H., Chemin, J.Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial Differential Equations. Springer-Verlag. |
[26] | Grafakos, L. (2014) Modern Fourier Analysis. 3rd Edition, Springer-Verlag, 1-20. |
[27] | Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, 1-10. |
[28] | Stein, E.M. and Shakarchi, R. (2005) Real Analysis, Measure theory, Integration, and Hilbert Spaces. Princeton University Press, 75-85. https://doi.org/10.1515/9781400835560 |