|
Pure Mathematics 2025
群的自同构个数的均值
|
Abstract:
令
表示模
剩余类群,
表示
个
做直积后的群,并记其自同构个数为
。对任意的正整数
以及任意给定的正整数
,我们得到了
的渐近公式,其表明
的平均个数在不计常数因子的意义下是
。该结果可被视作是Euler函数的经典均值结果在群论意义下的推广。
Let
be the additive group of the residue classes modulo
,
be the direct product of
’s, and
be the number of automorphisms of
[1] | Jordan, C. (1957) Traité substitutions et des equations algebriques. Gauthier-Yillars. |
[2] | Nowak, W.G. and Tóth, L. (2014) On the Average Number of Subgroups of the Group ℤm × ℤn. International Journal of Number Theory, 10, 363-374. https://doi.org/10.1142/s179304211350098x |
[3] | Tóth, L. and Zhai, W. (2018) On the Error Term Concerning the Number of Subgroups of the Groups ℤm × ℤn with m, n ≤ x. Acta Arithmetica, 183, 285-299. https://doi.org/10.4064/aa171111-7-2 |
[4] | Tóth, L. and Zhai, W. (2020) On the Average Number of Cyclic Subgroups of the Groups ℤn1 × ℤn2 × ℤn3 with n1, n2 ≤ n3. Research in Number Theory, 6, Article No. 12. https://doi.org/10.1007/s40993-020-0186-6 |
[5] | Sehgal, A., Sehgal, S. and Sharma, P.K. (2016) The Number of Automorphism of a Finite Abelian Group of Rank Two. Journal of Discrete Mathematical Sciences and Cryptography, 19, 163-171. https://doi.org/10.1080/09720529.2015.1103469 |
[6] | Hillar, C.J. and Rhea, D.L. (2007) Automorphisms of Finite Abelian Groups. The American Mathematical Monthly, 114, 917-923. https://doi.org/10.1080/00029890.2007.11920485 |
[7] | Balazard, M., Naimi, M. and Pétermann, Y.-S. (2008) Étude d’une somme arithmétique multiple liée à la fonction de Möbius. Acta Arithmetica, 132, 245-298. https://doi.org/10.4064/aa132-3-4 |
[8] | 潘承洞, 潘承彪. 解析数论基础[M]. 第2版. 哈尔滨: 哈尔滨工业大学出版社, 2016. |
[9] | Karatsuba, A.A. (1945) Basic Analytic Number Theory. Nauka. |
[10] | Murty, M.R. (2001) Problems in Analytic Number Theory. Springer-Verlag. https://doi.org/10.1007/978-1-4757-3441-6 |