全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

n k 的自同构个数的均值
On the Average Number of Automorphisms of the Group n k

DOI: 10.12677/pm.2025.155162, PP. 139-145

Keywords: 群的自同构,渐近公式,Perron公式,Dirichlet卷积方法
Automorphisms of Groups
, Asymptotic Formula, Perron’s Formula, Dirichlet Convolution Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

n 表示模 n 剩余类群, n k 表示 k n 做直积后的群,并记其自同构个数为 a k ( n ) 。对任意的正整数 n 以及任意给定的正整数 k ,我们得到了 nx a k ( n ) 的渐近公式,其表明 a k ( n ) 的平均个数在不计常数因子的意义下是 n k 2 。该结果可被视作是Euler函数的经典均值结果在群论意义下的推广。
Let n be the additive group of the residue classes modulo n , n k be the direct product of k n ’s, and a k ( n ) be the number of automorphisms of

References

[1]  Jordan, C. (1957) Traité substitutions et des equations algebriques. Gauthier-Yillars.
[2]  Nowak, W.G. and Tóth, L. (2014) On the Average Number of Subgroups of the Group ℤm × ℤn. International Journal of Number Theory, 10, 363-374.
https://doi.org/10.1142/s179304211350098x
[3]  Tóth, L. and Zhai, W. (2018) On the Error Term Concerning the Number of Subgroups of the Groups ℤm × ℤn with m, n ≤ x. Acta Arithmetica, 183, 285-299.
https://doi.org/10.4064/aa171111-7-2
[4]  Tóth, L. and Zhai, W. (2020) On the Average Number of Cyclic Subgroups of the Groups ℤn1 × ℤn2 × ℤn3 with n1, n2 ≤ n3. Research in Number Theory, 6, Article No. 12.
https://doi.org/10.1007/s40993-020-0186-6
[5]  Sehgal, A., Sehgal, S. and Sharma, P.K. (2016) The Number of Automorphism of a Finite Abelian Group of Rank Two. Journal of Discrete Mathematical Sciences and Cryptography, 19, 163-171.
https://doi.org/10.1080/09720529.2015.1103469
[6]  Hillar, C.J. and Rhea, D.L. (2007) Automorphisms of Finite Abelian Groups. The American Mathematical Monthly, 114, 917-923.
https://doi.org/10.1080/00029890.2007.11920485
[7]  Balazard, M., Naimi, M. and Pétermann, Y.-S. (2008) Étude d’une somme arithmétique multiple liée à la fonction de Möbius. Acta Arithmetica, 132, 245-298.
https://doi.org/10.4064/aa132-3-4
[8]  潘承洞, 潘承彪. 解析数论基础[M]. 第2版. 哈尔滨: 哈尔滨工业大学出版社, 2016.
[9]  Karatsuba, A.A. (1945) Basic Analytic Number Theory. Nauka.
[10]  Murty, M.R. (2001) Problems in Analytic Number Theory. Springer-Verlag.
https://doi.org/10.1007/978-1-4757-3441-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133