|
Pure Mathematics 2025
高维正态分布族Fisher度量的曲率
|
Abstract:
本文针对高维情形得到了高维正态分布在Fisher度量下的数量曲率,并且证明了当协方差矩阵Σ为对角矩阵时,正态分布族的参数空间是爱因斯坦空间,其Ricci曲率与度量张量成严格比例关系。
In this paper, the scalar curvature of high-dimensional normal distribution under Fisher metric is obtained for the high-dimensional case, and it is proved that when the covariance matrix Σ is a diagonal matrix, the parameter space of the normal distribution family is Einstein space, and its Ricci curvature is strictly proportional to the metric tensor.
[1] | Sato, Y., Sugawa, K. and Kawaguchi, M. (1979) The Geometrical Structure of the Parameter Space of the Two-Dimensional Normal Distribution. Reports on Mathematical Physics, 16, 111-119. https://doi.org/10.1016/0034-4877(79)90043-0 |
[2] | Skovgaard, L.T. (1984) A Riemannian Geometry of the Multivariate Normal Model. Scandinavian Journal of Statistics, 11, 211-223. |
[3] | 孙华飞, 张真宁, 彭林玉, 段晓敏. 信息几何导引[M]. 北京: 科学出版社, 2016. |
[4] | Amari, S. (2016) Information Geometry and Its Applications. Springer. |