%0 Journal Article %T 高维正态分布族Fisher度量的曲率
Curvature Properties of Fisher Metrics for High-Dimensional Normal Distribution Families %A 熊明月 %J Pure Mathematics %P 117-129 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.155160 %X 本文针对高维情形得到了高维正态分布在Fisher度量下的数量曲率,并且证明了当协方差矩阵Σ为对角矩阵时,正态分布族的参数空间是爱因斯坦空间,其Ricci曲率与度量张量成严格比例关系。
In this paper, the scalar curvature of high-dimensional normal distribution under Fisher metric is obtained for the high-dimensional case, and it is proved that when the covariance matrix Σ is a diagonal matrix, the parameter space of the normal distribution family is Einstein space, and its Ricci curvature is strictly proportional to the metric tensor. %K 正态分布, %K Fisher度量, %K 爱因斯坦空间
Normal Distribution %K Fisher Metric %K Einstein Space %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=114885