全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶非线性薛定谔系统规范解的存在性
Existence of Normalized Solution for Fractional Nonlinear Schr?dinger Systems

DOI: 10.12677/pm.2025.155158, PP. 97-107

Keywords: 非线性薛定谔系统,变分方法,规范解
Nonlinear Schr?dinger System
, Variational Method, Normalized Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究了一类分数阶非线性薛定谔系统 在 H s ( R N )× H s ( R N ) 中的规范解的存在性,且解满足 R N | u 1 | 2 dx = a 1 , R N | u 2 | 2 dx = a 2 . 其中规定 s( 0,1 ), a 1 , a 2 >0, λ 1 , λ 2 R 是以拉格朗日乘子出现的未知参数, h i : R N [ 0, ) 为有界连续函数。考虑 f i =

References

[1]  Applebaum, D. (2004) Levy Processes—From Probability to Finance and Quantum Groups, Notices. American Mathematical Society, 51, 1336-1347.
[2]  Servadei, R. and Valdinoci, E. (2014) The Brezis-Nirenberg Result for the Fractional Laplacian. Transactions of the American Mathematical Society, 367, 67-102.
https://doi.org/10.1090/s0002-9947-2014-05884-4
[3]  Yang, Y., Zhang, J. and Shang, X. (2013) Positive Solutions of Nonhomogeneous Fractional Laplacian Problem with Critical Exponent. Communications on Pure and Applied Analysis, 13, 567-584.
https://doi.org/10.3934/cpaa.2014.13.567
[4]  Yan, S., Yang, J. and Yu, X. (2015) Equations Involving Fractional Laplacian Operator: Compactness and Application. Journal of Functional Analysis, 269, 47-79.
https://doi.org/10.1016/j.jfa.2015.04.012
[5]  Jeanjean, L. (1997) Existence of Solutions with Prescribed Norm for Semilinear Elliptic Equations. Nonlinear Analysis: Theory, Methods & Applications, 28, 1633-1659.
https://doi.org/10.1016/s0362-546x(96)00021-1
[6]  Hirata, J. and Tanaka, K. (2019) Nonlinear Scalar Field Equations with L2 Constraint: Mountain Pass and Symmetric Mountain Pass Approaches. Advanced Nonlinear Studies, 19, 263-290.
https://doi.org/10.1515/ans-2018-2039
[7]  Molle, R., Riey, G. and Verzini, G. (2022) Normalized Solutions to Mass Supercritical Schrödinger Equations with Negative Potential. Journal of Differential Equations, 333, 302-331.
https://doi.org/10.1016/j.jde.2022.06.012
[8]  Bartsch, T. and Jeanjean, L. (2017) Normalized Solutions for Nonlinear Schrödinger Systems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148, 225-242.
https://doi.org/10.1017/s0308210517000087
[9]  Yang, T. (2020) Normalized Solutions for the Fractional Schrödinger Equation with a Focusing Nonlocal L2-Critical or L2-Supercritical Perturbation. Journal of Mathematical Physics, 61, Article 051505.
https://doi.org/10.1063/1.5144695
[10]  Zhang, X., Squassina, M. and Zhang, J. (2024) Multiplicity of Normalized Solutions for the Fractional Schrödinger Equation with Potentials. Mathematics, 12, Article 772.
https://doi.org/10.3390/math12050772
[11]  Luo, H. and Zhang, Z. (2020) Normalized Solutions to the Fractional Schrödinger Equations with Combined Nonlinearities. Calculus of Variations and Partial Differential Equations, 59, Article No. 143.
https://doi.org/10.1007/s00526-020-01814-5
[12]  Frank, R.L., Lenzmann, E. and Silvestre, L. (2015) Uniqueness of Radial Solutions for the Fractional Laplacian. Communications on Pure and Applied Mathematics, 69, 1671-1726.
https://doi.org/10.1002/cpa.21591
[13]  Fall, M.M. and Valdinoci, E. (2014) Uniqueness and Nondegeneracy of Positive Solutions of in RN When s Is Close to 1, Communications in Mathematical Physics, 69, 383-404.
https://doi.org/10.1007/s00220-014-1919-y
[14]  Berestycki, H. and Lions, P.-L. (1983) Nonlinear Scalar Field Equations, II Existence of Infinitely Many Solutions. Archive for Rational Mechanics and Analysis, 82, 347-375.
https://doi.org/10.1007/bf00250556
[15]  Willem, M. (1996) Minimax Theorems. Birkhauser.
[16]  Brändle, C., Colorado, E., de Pablo, A. and Sánchez, U. (2013) A Concave—Convex Elliptic Problem Involving the Fractional Laplacian. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143, 39-71.
https://doi.org/10.1017/s0308210511000175
[17]  Almgren, F.J. and Lieb, E.H. (1989) Symmetric Decreasing Rearrangement Is Sometimes Continuous. Journal of the American Mathematical Society, 2, 683-773.
https://doi.org/10.1090/s0894-0347-1989-1002633-4
[18]  Felmer, P., Quaas, A. and Tan, J. (2012) Positive Solutions of the Nonlinear Schrödinger Equation with the Fractional Laplacian. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142, 1237-1262.
https://doi.org/10.1017/s0308210511000746

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133