全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inhibitory Activity of Methanolic Extracts of Six (06) Medicinal Plants on the Growth of Escherichia coli Resistant to Imipenem by Production of Carbapenemase Isolated at the Tengandogo Hospital in Ouagadougou

DOI: 10.4236/jbm.2025.135015, PP. 185-196

Keywords: Medicinal Plants, Escherichia coli, Carbapenemase, Tengandogo Hospital

Full-Text   Cite this paper   Add to My Lib

Abstract:

The fight against bacterial infections is essentially based on the use of antibiotics. Unfortunately, bacteria have developed resistance mechanisms against antibiotics, particularly those of the β-lactam family. Thus, this study aims to evaluate the inhibitory activity of six medicinal plants resulting from an ethnobotanical investigation of these formidable bacteria. Plant methanol extracts were obtained using Soxhlet. The photometric method was used to measure the absorbances of bacterial (Escherichia coli) suspensions and for the phytochemical assay of plant extracts. Terminalia laxiflora (T. laxiflora) Engl. & Diels proves to be the most effective plant with an optical density (OD) of 0.322 against 1.133 of the positive control and 0.901 of the antibiotic. The total phenolic content of the methanolic extract of T. laxiflora Engl. & Diels was 68.45 ± 0.11 mg EAG/100 mg extract. The total flavonoids were 2.71 ± 0.09 mg EQ/100mg of extract. The antioxidant content of the extract (820.46 ± 0.17 μmol EAA/g of extract) is higher than the contents of quercetin (646.85 μmol EAA/g of extract) and trolox (765.99 μmol EAA/g of extract). As for the FRAP method, the extract gave a content (4190.93 ± 1.79 μmol EAA/g of extract) which exceeds that of quercetin (5991.29 ± 1.33 μmol EAA/g of extract). At the level of the ABTS method, the extract still gave a value (11935.45 ±3.18 μmol EAA/g of extract) higher than trolox (8137.61 ± 4.04 μmol EAA/g of extract).

References

[1]  WHO (2020) Lack of New Antibiotics Threatens Global Efforts to Contain Drug-Resistant Infections.
https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections
[2]  Jeon, J., Lee, J., Lee, J., Park, K., Karim, A., Lee, C., et al. (2015) Structural Basis for Carbapenem-Hydrolyzing Mechanisms of Carbapenemases Conferring Antibiotic Resistance. International Journal of Molecular Sciences, 16, 9654-9692.
https://doi.org/10.3390/ijms16059654
[3]  Ouedraogo, A. (2017) Prevalence, Circulation and Characterization of Multi-Resistant Bacteria in Burkina Faso. Human Medicine and Pathology. Montpellier University.
[4]  Nordmann, P. and Poirel, L. (2014) The Difficult-To-Control Spread of Carbapenemase Producers among Enterobacteriaceae Worldwide. Clinical Microbiology and Infection, 20, 821-830.
https://doi.org/10.1111/1469-0691.12719
[5]  Mètuor Dabiré, A., Zongo, K.J., Kaboré, B., Zèba, B., Baucher, M., El Jaziri, M. and Simporé, J. (2019) Resistance to β-Lactamines by Gram Negative Bacteria, Producing Several Types of Enzymes, Isolated from Urines in Pediatric Center of Ouagadougou in Burkina Faso. International Journal of Microbiology and Biotechnology, 3, 95-98.
https://doi.org/10.11648/j.ijmb.20180304.11
[6]  Dabiré, A.M., Bénao, S.L.C.S., Ouédraogo, N., Tiemtoré, R.Y.W., Badini, R.O., Bambara, L.E.B., et al. (2024) Molecular Detection of Extended-Spectrum Beta Lactamase and Carbapenemase Genes in Escherichia Coli and salmonella Spp. Isolated from Chickens Consumed Outdoors in Ouagadougou, Burkina Faso. Journal of Biosciences and Medicines, 12, 221-232.
https://doi.org/10.4236/jbm.2024.1211019
[7]  Dembélé, R., Soulama, I., Kaboré, W.A.D., Konaté, A., Kagambèga, A., N’Golo, D.C., et al. (2021) Molecular Characterization of Carbapenemase-Producing Enterobacterales in Children with Diarrhea in Rural Burkina Faso. Journal of Drug Delivery and Therapeutics, 11, 84-92.
https://doi.org/10.22270/jddt.v11i1.4513
[8]  Zeba, B., Simporé, R. and Nacoulma, O. (2004) Profiles de Substrat des β-Lactamases Extraites D'Isolats Cliniques au Centre Hospitalier Saint Camille de Ouagadougou/Burkina Faso. West African Journal of Pharmacology and Drug Research, 19, 28-32.
https://doi.org/10.4314/wajpdr.v19i1.14729
[9]  Asfour, H. (2018) Anti-Quorum Sensing Natural Compounds. Journal of Microscopy and Ultrastructure, 6, 1-10.
https://doi.org/10.4103/jmau.jmau_10_18
[10]  Li, Y., Xiao, P., Wang, Y. and Hao, Y. (2020) Mechanisms and Control Measures of Mature Biofilm Resistance to Antimicrobial Agents in the Clinical Context. ACS Omega, 5, 22684-22690.
https://doi.org/10.1021/acsomega.0c02294
[11]  Gbala, I.D. and Anibijuwon, I.I. (2018) Antibacterial Activity of Terminalia glaucescens, Mangifera indica and Mitracarpus villosus on Carbapenem-Resistant Enterobacteriaceae. African Journal of Clinical and Experimental Microbiology, 19, 251-259.
https://doi.org/10.4314/ajcem.v19i4.2
[12]  Mariod, A.A., Fadle, N., Ali, H.A.R. and Hasan, A.A. (2020) Antioxidant Activity, Total Phenolic Compounds and ld50 Bioassay (Toxicity) Activity of the Fermented Wood “Nikhra” Fractions of Combretum hartmannianum, Terminalia laxiflora and Acacia seyal. International Journal of Agricultural and Life Sciences, 4, 298-302.
[13]  Saraka, A.I., Camara, D., Bene, K. and Zirihi, G.N. (2018) Enquête ethnobotanique sur les Euphorbiaceae médicinales utilisées chez les Baoulé du District de Yamoussoukro (Côte d’Ivoire). Journal of Applied Biosciences, 126, Article 12734.
https://doi.org/10.4314/jab.v126i1.11
[14]  Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999) Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In: Methods in Enzymology, Elsevier, 152-178.
https://doi.org/10.1016/s0076-6879(99)99017-1
[15]  Arvouet-Grand, A., Vennat, B., Pourrat, A. and Legret, P. (1994) Standardization of a Propolis Extract and Identification of the Main Constituents. Journal of Pharmacy of Belgium, 49, 462-468.
https://www.lissa.fr/rep/articles/7884635
[16]  Meda, N.T.R., Lamien-Med, A., Kiendrebeo, M., Lamien, C.E., Coulibaly, A.Y., Millogo-Ra, J., et al. (2010) In Vitro Antioxidant, Xanthine Oxidase and Acetylcholinesterase Inhibitory Activities of Balanites aegyptiaca (L.) Del. (balanitaceae). Pakistan Journal of Biological Sciences, 13, 362-368.
https://doi.org/10.3923/pjbs.2010.362.368
[17]  Velázquez, E., Tournier, H.A., Mordujovich de Buschiazzo, P., Saavedra, G. and Schinella, G.R. (2003) Antioxidant Activity of Paraguayan Plant Extracts. Fitoterapia, 74, 91-97.
https://doi.org/10.1016/s0367-326x(02)00293-9
[18]  Toudji, A.G., Djeri, B., Karou, S.D., Tigossou, S., Ameyapoh, Y. and De Souza, C. (2017) Prévalence des souches d’entérobactéries productrices de bêta-lactamases à spectre élargi isolées au Togo et de leur sensibilité aux antibiotiques. International Journal of Biological and Chemical Sciences, 11, 1165-1177.
https://doi.org/10.4314/ijbcs.v11i3.19
[19]  Pelmont, J. (1993) Bactéries et environnement adaptations physiologiques. Presses universitaires de Grenoble.
https://www.uga-editions.com/medias/fichier/extraits-bacteries-environnement_1503654774998-pdf
[20]  Mohieldin, E.A.M., Muddathir, A.M., Yamauchi, K. and Mitsunaga, T. (2017) Anti-Caries Activity of Selected Sudanese Medicinal Plants with Emphasis on Terminalia Laxiflora. Revista Brasileira de Farmacognosia, 27, 611-618.
https://doi.org/10.1016/j.bjp.2017.04.002
[21]  Juang, L., Sheu, S. and Lin, T. (2004) Determination of Hydrolyzable Tannins in the Fruit of Terminalia chebula Retz. by High-Performance Liquid Chromatography and Capillary Electrophoresis. Journal of Separation Science, 27, 718-724.
https://doi.org/10.1002/jssc.200401741
[22]  Avula, B., Wang, Y., Wang, M., Shen, Y. and Khan, I. (2013) Simultaneous Determination and Characterization of Tannins and Triterpene Saponins from the Fruits of Various Species of Terminalia and Phyllantus Emblica Using a UHPLC-UV-MS Method: Application to Triphala. Planta Medica, 79, 181-188.
https://doi.org/10.1055/s-0032-1328089
[23]  Wong, C., Li, H., Cheng, K. and Chen, F. (2006) A Systematic Survey of Antioxidant Activity of 30 Chinese Medicinal Plants Using the Ferric Reducing Antioxidant Power Assay. Food Chemistry, 97, 705-711.
https://doi.org/10.1016/j.foodchem.2005.05.049
[24]  Turkmen, N., Velioglu, Y.S., Sari, F. and Polat, G. (2007) Effect of Extraction Conditions on Measured Total Polyphenol Contents and Antioxidant and Antibacterial Activities of Black Tea. Molecules, 12, 484-496.
https://doi.org/10.3390/12030484
[25]  Muddathir, A.M., Yamauchi, K. and Mitsunaga, T. (2013) Anti-Acne Activity of Tannin-Related Compounds Isolated from Terminalia Laxiflora. Journal of Wood Science, 59, 426-431.
https://doi.org/10.1007/s10086-013-1344-4
[26]  Macheix, J., Fleuriet, A. and Jay-Allemand, C. (2005) Phenolic Compounds of Plants: An Example of Secondary Metabolites of Economic Importance. Ed. Polytechnic and University Presses in French-Speaking Switzerland, Lausanne.
https://www.persee.fr/doc/jobot_1280-8202_2006_num_33_1_2012_t1_0094_0000_1
[27]  Shan, B., Cai, Y., Brooks, J.D. and Corke, H. (2007) The in Vitro Antibacterial Activity of Dietary Spice and Medicinal Herb Extracts. International Journal of Food Microbiology, 117, 112-119.
https://doi.org/10.1016/j.ijfoodmicro.2007.03.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133