|
具有时空卷积的Wazwaz-Benjamin-Bona-Mahony方程孤立波和周期波的不存在性
|
Abstract:
本文研究具有时空卷积的Wazwaz-Benjamin-Bona-Mahony (WBBM)方程孤立波和周期波的存在性。根据几何奇异摄动理论,将一个非线性偏微分方程转化为平面二维动力系统。基于Melnikov方法,可以判断出扰动WBBM方程的孤立波和周期波是不存在的。
This paper discusses the existence of solitary waves and periodic waves for Wazwaz-Benjamin-Bona-Mahony (WBBM) equation with spatiotemporal convolution. According to the theory of geometric singular perturbations, a nonlinear partial differential equation is transformed into a two-dimensional planar dynamical system. Based on the Melnikov method, it can be determined that solitary waves and periodic waves of perturbed WBBM equation do not exist.
[1] | Benjamin, T., Bona, J. and Mahony, J. (1972) Model Equations for Long Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal Society of London, 272, 47-78. |
[2] | Amick, C.J., Bona, J.L. and Schonbek, M.E. (1989) Decay of Solutions of Some Nonlinear Wave Equations. Journal of Differential Equations, 81, 1-49. https://doi.org/10.1016/0022-0396(89)90176-9 |
[3] | Benjamin, T. (1974) Lectures on Nonlinear Wave Motion. Lecture Notes in Applied Mathematics, 15, 3-47. |
[4] | Tso, T. (1996) Exixtence of Solutions of the Modified Benjamin-Bona-Mahony-Equaton. Chinese Journal of Mathematics, 24, 327-336. |
[5] | Johnpillai, A.G., Kara, A.H. and Biswas, A. (2013) Symmetry Reduction, Exact Group-Invariant Solutions and Conservation Laws of the Benjamin-Bona-Mahoney Equation. Applied Mathematics Letters, 26, 376-381. https://doi.org/10.1016/j.aml.2012.10.012 |
[6] | Belobo, D.B. and Das, T. (2017) Solitary and Jacobi Elliptic Wave Solutions of the Generalized Benjamin-Bona-Mahony Equation. Communications in Nonlinear Science and Numerical Simulation, 48, 270-277. https://doi.org/10.1016/j.cnsns.2017.01.001 |
[7] | Omrani, K. (2006) The Convergence of Fully Discrete Galerkin Approximations for the Benjamin-Bona-Mahony (BBM) Equation. Applied Mathematics and Computation, 180, 614-621. https://doi.org/10.1016/j.amc.2005.12.046 |
[8] | Rosenau, P. (1997) On Nonanalytic Solitary Waves Formed by a Nonlinear Dispersion. Physics Letters A, 230, 305-318. https://doi.org/10.1016/s0375-9601(97)00241-7 |
[9] | Wazwaz, A. (2005) Exact Solutions with Compact and Noncompact Structures for the One-Dimensional Generalized Benjamin-Bona-Mahony Equation. Communications in Nonlinear Science and Numerical Simulation, 10, 855-867. https://doi.org/10.1016/j.cnsns.2004.06.002 |
[10] | Zhao, X., Xu, W., Li, S. and Shen, J. (2006) Bifurcations of Traveling Wave Solutions for a Class of the Generalized Benjamin-Bona-Mahony Equation. Applied Mathematics and Computation, 175, 1760-1774. https://doi.org/10.1016/j.amc.2005.09.019 |
[11] | Zhao, X., Jia, H., Zhou, H. and Tang, Y. (2008) Bifurcations of Travelling Wave Solutions in a Non-Linear Dispersive Equation. Chaos, Solitons & Fractals, 37, 525-531. https://doi.org/10.1016/j.chaos.2006.09.028 |
[12] | Wazwaz, A. (2017) Exact Soliton and Kink Solutions for New (3 + 1)-Dimensional Nonlinear Modified Equations of Wave Propagation. Open Engineering, 7, 169-174. https://doi.org/10.1515/eng-2017-0023 |
[13] | Mamun, A.A., Ananna, S.N., Gharami, P.P., An, T. and Asaduzzaman, M. (2022) The Improved Modified Extended Tanh-Function Method to Develop the Exact Travelling Wave Solutions of a Family of 3D Fractional WBBM Equations. Results in Physics, 41, Article ID: 105969. https://doi.org/10.1016/j.rinp.2022.105969 |
[14] | Abbas, N., Bibi, F., Hussain, A., Ibrahim, T.F., Dawood, A.A., Osman Birkea, F.M., et al. (2024) Optimal System, Invariant Solutions and Dynamics of the Solitons for the Wazwaz Benjamin Bona Mahony Equation. Alexandria Engineering Journal, 91, 429-441. https://doi.org/10.1016/j.aej.2024.02.021 |
[15] | Shakeel, M., Attaullah, Bin Turki, N., Ali Shah, N. and Tag, S.M. (2023) Diversity of Soliton Solutions to the (3 + 1)-Dimensional Wazwaz-Benjamin-Bona-Mahony Equations Arising in Mathematical Physics. Results in Physics, 51, Article ID: 106624. https://doi.org/10.1016/j.rinp.2023.106624 |
[16] | Britton, N.F. (1989) Aggregation and the Competitive Exclusion Principle. Journal of Theoretical Biology, 136, 57-66. https://doi.org/10.1016/s0022-5193(89)80189-4 |
[17] | Chen, A., Guo, L. and Deng, X. (2016) Existence of Solitary Waves and Periodic Waves for a Perturbed Generalized BBM Equation. Journal of Differential Equations, 261, 5324-5349. https://doi.org/10.1016/j.jde.2016.08.003 |
[18] | Cheng, F. and Li, J. (2021) Geometric Singular Perturbation Analysis of Degasperis-Procesi Equation with Distributed Delay. Discrete & Continuous Dynamical Systems—A, 41, 967-985. https://doi.org/10.3934/dcds.2020305 |
[19] | Qiao, Q. and Zhang, X. (2023) Traveling Waves and Their Spectral Stability in Keller-Segel System with Large Cell Diffusion. Journal of Differential Equations, 344, 807-845. https://doi.org/10.1016/j.jde.2022.11.003 |
[20] | Shen, J. and Zhang, X. (2021) Traveling Pulses in a Coupled Fitzhugh-Nagumo Equation. Physica D: Nonlinear Phenomena, 418, Article ID: 132848. https://doi.org/10.1016/j.physd.2021.132848 |
[21] | Yan, W., Liu, Z. and Liang, Y. (2014) Existence of Solitary Waves and Periodic Waves to a Perturbed Generalized KdV Equation. Mathematical Modelling and Analysis, 19, 537-555. https://doi.org/10.3846/13926292.2014.960016 |
[22] | Wen, Z. (2020) On Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Gardner Equation. Mathematical Methods in the Applied Sciences, 43, 4422-4427. https://doi.org/10.1002/mma.6204 |
[23] | Fan, F. and Wei, M. (2024) Traveling Waves in a Quintic BBM Equation under Both Distributed Delay and Weak Backward Diffusion. Physica D: Nonlinear Phenomena, 458, Article ID: 133995. https://doi.org/10.1016/j.physd.2023.133995 |
[24] | Zhang, L., Han, M., Zhang, M. and Khalique, C.M. (2020) A New Type of Solitary Wave Solution of the mKdV Equation under Singular Perturbations. International Journal of Bifurcation and Chaos, 30, Article ID: 2050162. https://doi.org/10.1142/s021812742050162x |
[25] | Du, Z. and Li, J. (2022) Geometric Singular Perturbation Analysis to Camassa-Holm Kuramoto-Sivashinsky Equation. Journal of Differential Equations, 306, 418-438. https://doi.org/10.1016/j.jde.2021.10.033 |
[26] | Zheng, H. and Xia, Y. (2023) The Solitary Wave, Kink and Anti-Kink Solutions Coexist at the Same Speed in a Perturbed Nonlinear Schrödinger Equation. Journal of Physics A: Mathematical and Theoretical, 56, Article ID: 155701. https://doi.org/10.1088/1751-8121/acc2fc |
[27] | Zheng, H. and Xia, Y. (2024) Bifurcation of the Travelling Wave Solutions in a Perturbed (1 + 1)-Dimensional Dispersive Long Wave Equation via a Geometric Approach. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1-28. https://doi.org/10.1017/prm.2024.45 |
[28] | Fenichel, N. (1979) Geometric Singular Perturbation Theory for Ordinary Differential Equations. Journal of Differential Equations, 31, 53-98. https://doi.org/10.1016/0022-0396(79)90152-9 |
[29] | Li, J. (2013) Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions. Science Press. |
[30] | Xia, Y., Xiao, H. and Zhou, X. (2025) Solitary and Periodic Waves for the Perturbed Wazwaz-Benjamin-Bona-Mahony Equation. Preprint. |
[31] | Wiggins, S. (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag. |
[32] | Wiggins, S. (1998) Global Bifurcations and Chaos. Springer-Verlag. |
[33] | Liu, C. and Xiao, D. (2013) The Monotonicity of the Ratio of Two Abelian Integrals. Transactions of the American Mathematical Society, 365, 5525-5544. https://doi.org/10.1090/s0002-9947-2013-05934-x |