全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有时空卷积的Wazwaz-Benjamin-Bona-Mahony方程孤立波和周期波的不存在性
Non-Existence of Solitary Wave and Periodic Wave for Wazwaz-Benjamin-Bona-Mahony Equation with Spatiotemporal Convolution

DOI: 10.12677/aam.2025.145230, PP. 29-39

Keywords: Wazwaz-Benjamin-Bona-Mahony方程,几何奇异摄动,孤立波解,周期波解,Melnikov积分
Wazwaz-Benjamin-Bona-Mahony Equation
, Geometric Singular Perturbation, Solitary Wave Solution, Periodic Wave Solution, Melnikov Integral

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究具有时空卷积的Wazwaz-Benjamin-Bona-Mahony (WBBM)方程孤立波和周期波的存在性。根据几何奇异摄动理论,将一个非线性偏微分方程转化为平面二维动力系统。基于Melnikov方法,可以判断出扰动WBBM方程的孤立波和周期波是不存在的。
This paper discusses the existence of solitary waves and periodic waves for Wazwaz-Benjamin-Bona-Mahony (WBBM) equation with spatiotemporal convolution. According to the theory of geometric singular perturbations, a nonlinear partial differential equation is transformed into a two-dimensional planar dynamical system. Based on the Melnikov method, it can be determined that solitary waves and periodic waves of perturbed WBBM equation do not exist.

References

[1]  Benjamin, T., Bona, J. and Mahony, J. (1972) Model Equations for Long Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal Society of London, 272, 47-78.
[2]  Amick, C.J., Bona, J.L. and Schonbek, M.E. (1989) Decay of Solutions of Some Nonlinear Wave Equations. Journal of Differential Equations, 81, 1-49.
https://doi.org/10.1016/0022-0396(89)90176-9
[3]  Benjamin, T. (1974) Lectures on Nonlinear Wave Motion. Lecture Notes in Applied Mathematics, 15, 3-47.
[4]  Tso, T. (1996) Exixtence of Solutions of the Modified Benjamin-Bona-Mahony-Equaton. Chinese Journal of Mathematics, 24, 327-336.
[5]  Johnpillai, A.G., Kara, A.H. and Biswas, A. (2013) Symmetry Reduction, Exact Group-Invariant Solutions and Conservation Laws of the Benjamin-Bona-Mahoney Equation. Applied Mathematics Letters, 26, 376-381.
https://doi.org/10.1016/j.aml.2012.10.012
[6]  Belobo, D.B. and Das, T. (2017) Solitary and Jacobi Elliptic Wave Solutions of the Generalized Benjamin-Bona-Mahony Equation. Communications in Nonlinear Science and Numerical Simulation, 48, 270-277.
https://doi.org/10.1016/j.cnsns.2017.01.001
[7]  Omrani, K. (2006) The Convergence of Fully Discrete Galerkin Approximations for the Benjamin-Bona-Mahony (BBM) Equation. Applied Mathematics and Computation, 180, 614-621.
https://doi.org/10.1016/j.amc.2005.12.046
[8]  Rosenau, P. (1997) On Nonanalytic Solitary Waves Formed by a Nonlinear Dispersion. Physics Letters A, 230, 305-318.
https://doi.org/10.1016/s0375-9601(97)00241-7
[9]  Wazwaz, A. (2005) Exact Solutions with Compact and Noncompact Structures for the One-Dimensional Generalized Benjamin-Bona-Mahony Equation. Communications in Nonlinear Science and Numerical Simulation, 10, 855-867.
https://doi.org/10.1016/j.cnsns.2004.06.002
[10]  Zhao, X., Xu, W., Li, S. and Shen, J. (2006) Bifurcations of Traveling Wave Solutions for a Class of the Generalized Benjamin-Bona-Mahony Equation. Applied Mathematics and Computation, 175, 1760-1774.
https://doi.org/10.1016/j.amc.2005.09.019
[11]  Zhao, X., Jia, H., Zhou, H. and Tang, Y. (2008) Bifurcations of Travelling Wave Solutions in a Non-Linear Dispersive Equation. Chaos, Solitons & Fractals, 37, 525-531.
https://doi.org/10.1016/j.chaos.2006.09.028
[12]  Wazwaz, A. (2017) Exact Soliton and Kink Solutions for New (3 + 1)-Dimensional Nonlinear Modified Equations of Wave Propagation. Open Engineering, 7, 169-174.
https://doi.org/10.1515/eng-2017-0023
[13]  Mamun, A.A., Ananna, S.N., Gharami, P.P., An, T. and Asaduzzaman, M. (2022) The Improved Modified Extended Tanh-Function Method to Develop the Exact Travelling Wave Solutions of a Family of 3D Fractional WBBM Equations. Results in Physics, 41, Article ID: 105969.
https://doi.org/10.1016/j.rinp.2022.105969
[14]  Abbas, N., Bibi, F., Hussain, A., Ibrahim, T.F., Dawood, A.A., Osman Birkea, F.M., et al. (2024) Optimal System, Invariant Solutions and Dynamics of the Solitons for the Wazwaz Benjamin Bona Mahony Equation. Alexandria Engineering Journal, 91, 429-441.
https://doi.org/10.1016/j.aej.2024.02.021
[15]  Shakeel, M., Attaullah, Bin Turki, N., Ali Shah, N. and Tag, S.M. (2023) Diversity of Soliton Solutions to the (3 + 1)-Dimensional Wazwaz-Benjamin-Bona-Mahony Equations Arising in Mathematical Physics. Results in Physics, 51, Article ID: 106624.
https://doi.org/10.1016/j.rinp.2023.106624
[16]  Britton, N.F. (1989) Aggregation and the Competitive Exclusion Principle. Journal of Theoretical Biology, 136, 57-66.
https://doi.org/10.1016/s0022-5193(89)80189-4
[17]  Chen, A., Guo, L. and Deng, X. (2016) Existence of Solitary Waves and Periodic Waves for a Perturbed Generalized BBM Equation. Journal of Differential Equations, 261, 5324-5349.
https://doi.org/10.1016/j.jde.2016.08.003
[18]  Cheng, F. and Li, J. (2021) Geometric Singular Perturbation Analysis of Degasperis-Procesi Equation with Distributed Delay. Discrete & Continuous Dynamical Systems—A, 41, 967-985.
https://doi.org/10.3934/dcds.2020305
[19]  Qiao, Q. and Zhang, X. (2023) Traveling Waves and Their Spectral Stability in Keller-Segel System with Large Cell Diffusion. Journal of Differential Equations, 344, 807-845.
https://doi.org/10.1016/j.jde.2022.11.003
[20]  Shen, J. and Zhang, X. (2021) Traveling Pulses in a Coupled Fitzhugh-Nagumo Equation. Physica D: Nonlinear Phenomena, 418, Article ID: 132848.
https://doi.org/10.1016/j.physd.2021.132848
[21]  Yan, W., Liu, Z. and Liang, Y. (2014) Existence of Solitary Waves and Periodic Waves to a Perturbed Generalized KdV Equation. Mathematical Modelling and Analysis, 19, 537-555.
https://doi.org/10.3846/13926292.2014.960016
[22]  Wen, Z. (2020) On Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Gardner Equation. Mathematical Methods in the Applied Sciences, 43, 4422-4427.
https://doi.org/10.1002/mma.6204
[23]  Fan, F. and Wei, M. (2024) Traveling Waves in a Quintic BBM Equation under Both Distributed Delay and Weak Backward Diffusion. Physica D: Nonlinear Phenomena, 458, Article ID: 133995.
https://doi.org/10.1016/j.physd.2023.133995
[24]  Zhang, L., Han, M., Zhang, M. and Khalique, C.M. (2020) A New Type of Solitary Wave Solution of the mKdV Equation under Singular Perturbations. International Journal of Bifurcation and Chaos, 30, Article ID: 2050162.
https://doi.org/10.1142/s021812742050162x
[25]  Du, Z. and Li, J. (2022) Geometric Singular Perturbation Analysis to Camassa-Holm Kuramoto-Sivashinsky Equation. Journal of Differential Equations, 306, 418-438.
https://doi.org/10.1016/j.jde.2021.10.033
[26]  Zheng, H. and Xia, Y. (2023) The Solitary Wave, Kink and Anti-Kink Solutions Coexist at the Same Speed in a Perturbed Nonlinear Schrödinger Equation. Journal of Physics A: Mathematical and Theoretical, 56, Article ID: 155701.
https://doi.org/10.1088/1751-8121/acc2fc
[27]  Zheng, H. and Xia, Y. (2024) Bifurcation of the Travelling Wave Solutions in a Perturbed (1 + 1)-Dimensional Dispersive Long Wave Equation via a Geometric Approach. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1-28.
https://doi.org/10.1017/prm.2024.45
[28]  Fenichel, N. (1979) Geometric Singular Perturbation Theory for Ordinary Differential Equations. Journal of Differential Equations, 31, 53-98.
https://doi.org/10.1016/0022-0396(79)90152-9
[29]  Li, J. (2013) Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions. Science Press.
[30]  Xia, Y., Xiao, H. and Zhou, X. (2025) Solitary and Periodic Waves for the Perturbed Wazwaz-Benjamin-Bona-Mahony Equation. Preprint.
[31]  Wiggins, S. (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag.
[32]  Wiggins, S. (1998) Global Bifurcations and Chaos. Springer-Verlag.
[33]  Liu, C. and Xiao, D. (2013) The Monotonicity of the Ratio of Two Abelian Integrals. Transactions of the American Mathematical Society, 365, 5525-5544.
https://doi.org/10.1090/s0002-9947-2013-05934-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133