%0 Journal Article %T 具有时空卷积的Wazwaz-Benjamin-Bona-Mahony方程孤立波和周期波的不存在性
Non-Existence of Solitary Wave and Periodic Wave for Wazwaz-Benjamin-Bona-Mahony Equation with Spatiotemporal Convolution %A 周笑笑 %J Advances in Applied Mathematics %P 29-39 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.145230 %X 本文研究具有时空卷积的Wazwaz-Benjamin-Bona-Mahony (WBBM)方程孤立波和周期波的存在性。根据几何奇异摄动理论,将一个非线性偏微分方程转化为平面二维动力系统。基于Melnikov方法,可以判断出扰动WBBM方程的孤立波和周期波是不存在的。
This paper discusses the existence of solitary waves and periodic waves for Wazwaz-Benjamin-Bona-Mahony (WBBM) equation with spatiotemporal convolution. According to the theory of geometric singular perturbations, a nonlinear partial differential equation is transformed into a two-dimensional planar dynamical system. Based on the Melnikov method, it can be determined that solitary waves and periodic waves of perturbed WBBM equation do not exist. %K Wazwaz-Benjamin-Bona-Mahony方程, %K 几何奇异摄动, %K 孤立波解, %K 周期波解, %K Melnikov积分
Wazwaz-Benjamin-Bona-Mahony Equation %K Geometric Singular Perturbation %K Solitary Wave Solution %K Periodic Wave Solution %K Melnikov Integral %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113848