|
Pure Mathematics 2025
涉及拉东测度的p-Laplacian退化椭圆方程的不存在性结果
|
Abstract:
在本文中,我们研究了一类非线性p-Laplacian退化椭圆方程解的不存在性:
其中
,
,且
是一个非负拉东测度,集中于调和容量为零的集合E上。本文首先利用截断技巧构造逼近方程,并借助Lions的结果和估计,获得逼近解的存在性及估计,这些估计保证了通过逼近问题的解取极限,可以得到原问题的解。最后,借助控制收敛定理、弱下半连续性及其他相关方法,证明了在源项为集中于调和容量为零的集合的拉东测度时,原问题的解趋于零。
In this paper we study the existence and regularity of solutions for a class of nonlinear degenerate elliptic equations
[1] | Serrin, J. (1964) Local Behavior of Solutions of Quasi-Linear Equations. Acta Mathematica, 111, 247-302. https://doi.org/10.1007/bf02391014 |
[2] | Lions, J.L. (1969) Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod. |
[3] | DiBenedetto, E. (1993) Degenerate Parabolic Equations. Springer. https://doi.org/10.1007/978-1-4612-0895-2 |
[4] | Boccardo, L. and Orsina, L. (2007) Existence and Regularity Results for Some Elliptic Equations with Singularities and Applications to Schrödinger Equations. Manuscripta Mathematica, 122, 157-172. |
[5] | Boccardo, L., Croce, G. and Orsina, L. (2011) Nonlinear Degenerate Elliptic Problems with Solutions. Manuscripta Mathematica, 137, 419-439. https://doi.org/10.1007/s00229-011-0473-6 |
[6] | Dal Maso, G., Murat, F., Orsina, L. and Prignet, A. (1999) Renormalized Solutions of Elliptic Equations with General Measure Data. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 28, 741-808. |