|
聚氨酯三维肺癌模型用于盐酸青藤碱对肺癌细胞侵袭转移蛋白分泌影响的研究
|
Abstract:
目的:探讨通过三维(3D)聚氨酯泡沫支架构建肺癌模型,并用于盐酸青藤碱影响肺癌A549细胞分泌侵袭转移蛋白的可行性。方法:采用聚氨酯泡沫支架构建3D肺癌模型,进行不同剂量盐酸青藤碱对肺癌A549细胞作用实验,ELISA法测定A549细胞培养上清中基质金属蛋白酶(MMP-2, MMP-9)和上皮间质转化(EMT)标记物E-cadherin、N-cadherin、Vimentin的表达,观察迁移及侵袭相关蛋白分泌情况。结果:盐酸青藤碱可有效抑制A549细胞培养上清液中MMP-2、MMP-9的表达,以及有效抑制EMT,表现为下调N-cadherin、Vimentin蛋白表达,上调E-cadherin蛋白表达。随着盐酸青藤碱浓度的增加,抑制增加,呈剂量依赖性。对3D培养的抑制显著低于2D培养。结论:与2D培养相比,本实验中建立的基于聚氨酯的3D肺癌模型可能更好地模拟了体内病理生理状况,更具预测及分析药物能力。
Objective: To investigate the feasibility of constructing a lung cancer model with three-dimensional (3D) polyurethane foam scaffold and using sinomenine hydrochloride to influence the secretion of invasion and metastasis protein in A549 cells of lung cancer. Methods: A three-dimensional lung cancer model was constructed with polyurethane foam scaffold, and the effects of sinomenine hydrochloride on A549 cells were tested. The expression of matrix metalloproteinases (MMP-2, MMP-9) and epithelial-mesenchymal transition (EMT) markers E-cadherin, N-cadherin and Vimentin in the supernatant of A549 cell culture was determined by ELISA, and the secretion of migration and invasion related proteins was observed. Results: Sinomenine hydrochloride could effectively inhibit the expression of MMP-2 and MMP-9 in the supernatant of A549 cell culture, and effectively inhibit EMT, such as down-regulating the expression of N-cadherin and Vimentin, and up-regulating the expression of E-cadherin. With the increase of sinomenine hydrochloride concentration, the inhibition increased in a dose-dependent manner. The inhibition of 3D culture was significantly lower than that of 2D culture. Conclusion: Compared with 2D culture, the 3D lung cancer model based on polyurethane established in this study may better simulate the pathophysiology in vivo, and has more ability to predict and analyze drugs.
[1] | Ortigosa-Palomo, A., Porras-Alcalá, C., Quiñonero, F., Moya-Utrera, F., Ortiz, R., López-Romero, J.M., et al. (2023) Antitumor Activity of Bengamide II in a Panel of Human and Murine Tumor Cell Lines: In Vitro and in Vivo Determination of Effectiveness against Lung Cancer. Biomedicine & Pharmacotherapy, 168, Article ID: 115789. https://doi.org/10.1016/j.biopha.2023.115789 |
[2] | Balážová, K., Clevers, H. and Dost, A.F. (2023) The Role of Macrophages in Non-Small Cell Lung Cancer and Advancements in 3D Co-Cultures. eLife, 12, e82998. https://doi.org/10.7554/elife.82998 |
[3] | Bassi, G., Grimaudo, M.A., Panseri, S. and Montesi, M. (2021) Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce in Vitro the Human Body Complexity. International Journal of Molecular Sciences, 22, Article 1195. https://doi.org/10.3390/ijms22031195 |
[4] | Hoarau-Véchot, J., Rafii, A., Touboul, C. and Pasquier, J. (2018) Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? International Journal of Molecular Sciences, 19, Article 181. https://doi.org/10.3390/ijms19010181 |
[5] | Doillon, C.J., Gagnon, E., Paradis, R. and Koutsilieris, M. (2004) Three-Dimensional Culture System as a Model for Studying Cancer Cell Invasion Capacity and Anticancer Drug Sensitivity. Anticancer Research, 24, 2169-2177. |
[6] | Li, R.Z., Guan, X.X., Wang, X.R., Bao, W., Lian, L., Choi, S.W., et al. (2023) Sinomenine Hydrochloride Bidirectionally Inhibits Progression of Tumor and Autoimmune Diseases by Regulating AMPK Pathway. Phytomedicine, 114, Article ID: 154751. https://doi.org/10.1016/j.phymed.2023.154751 |
[7] | 王晗,黄逸伦,朱莲,张文元,唐靓.聚氨酯三维肺癌模型的建立及姜黄素药敏试验[J].药物化学,2025,13(1):11-18. |
[8] | Gao, M., Lai, K., Deng, Y., Lu, Z., Song, C., Wang, W., et al. (2023) Eriocitrin Inhibits Epithelial-Mesenchymal Transformation (EMT) in Lung Adenocarcinoma Cells via Triggering Ferroptosis. Aging, 15, 10089-10104. https://doi.org/10.18632/aging.205049 |
[9] | Mei, Y., Wu, D., Berg, J., Tolksdorf, B., Roehrs, V., Kurreck, A., et al. (2023) Generation of a Perfusable 3D Lung Cancer Model by Digital Light Processing. International Journal of Molecular Sciences, 24, Article 6071. https://doi.org/10.3390/ijms24076071 |
[10] | Jiang, R., Huang, J., Sun, X., Chu, X., Wang, F., Zhou, J., et al. (2022) Construction of in Vitro 3-D Model for Lung Cancer-Cell Metastasis Study. BMC Cancer, 22, Article No. 438. https://doi.org/10.1186/s12885-022-09546-9 |
[11] | van der Merwe, L., Svitina, H., Willers, C., Wrzesinski, K. and Gouws, C. (2022) A Novel NCI‐H69V Small Cell Lung Cancer Functional Mini‐Tumor Model for Future Treatment Screening Applications. Biotechnology Progress, 38, e3253. https://doi.org/10.1002/btpr.3253 |
[12] | Mazzocchi, A., Dominijanni, A. and Soker, S. (2022) Pleural Effusion Aspirate for Use in 3D Lung Cancer Modeling and Chemotherapy Screening. In: Rasooly, A., Baker, H. and Ossandon, M.R., Eds., Biomedical Engineering Technologies, Springer, 471-483. https://doi.org/10.1007/978-1-0716-1811-0_24 |
[13] | Vega, V.F., Yang, D., Jordán, L.O., Ye, F., Conway, L., Chen, L.Y., et al. (2023) Protocol for 3D Screening of Lung Cancer Spheroids Using Natural Products. SLAS Discovery, 28, 20-28. https://doi.org/10.1016/j.slasd.2023.01.005 |
[14] | Zhu, J., Zhu, H. and Gao, J. (2023) The Anti-Tumor Potential of Sinomenine: A Narrative Review. Translational Cancer Research, 12, 2393-2404. https://doi.org/10.21037/tcr-23-267 |
[15] | Shen, K., Hung, J., Liao, Y., Tsai, S., Wu, M. and Chen, P. (2020) Sinomenine Inhibits Migration and Invasion of Human Lung Cancer Cell through Downregulating Expression of MIR-21 and MMPs. International Journal of Molecular Sciences, 21, Article 3080. https://doi.org/10.3390/ijms21093080 |
[16] | Li, R.Z., Guan, X.X., Wang, X.R., Bao, W., Lian, L., Choi, S.W., et al. (2023) Sinomenine Hydrochloride Bidirectionally Inhibits Progression of Tumor and Autoimmune Diseases by Regulating AMPK Pathway. Phytomedicine, 114, Article ID: 154751. https://doi.org/10.1016/j.phymed.2023.154751 |
[17] | Zhao, B., Liu, L., Mao, J., Liu, K., Fan, W., Liu, J., et al. (2017) Sinomenine Hydrochloride Attenuates the Proliferation, Migration, Invasiveness, Angiogenesis and Epithelial-Mesenchymal Transition of Clear-Cell Renal Cell Carcinoma Cells via Targeting Smad in Vitro. Biomedicine & Pharmacotherapy, 96, 1036-1044. https://doi.org/10.1016/j.biopha.2017.11.123 |
[18] | Kasurinen, A., Tervahartiala, T., Laitinen, A., Kokkola, A., Sorsa, T., Böckelman, C., et al. (2018) High Serum MMP-14 Predicts Worse Survival in Gastric Cancer. PLOS ONE, 13, e0208800. https://doi.org/10.1371/journal.pone.0208800 |
[19] | Sun, Y., Zhou, Q., Lu, Y., Zhang, H., Chen, Q., Zhao, M., et al. (2019) Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition. Molecules, 24, Article 1131. https://doi.org/10.3390/molecules24061131 |
[20] | Wu, Z., Wang, T., Fang, M., Huang, W., Sun, Z., Xiao, J., et al. (2018) MFAP5 Promotes Tumor Progression and Bone Metastasis by Regulating ERK/MMP Signaling Pathways in Breast Cancer. Biochemical and Biophysical Research Communications, 498, 495-501. https://doi.org/10.1016/j.bbrc.2018.03.007 |
[21] | Liu, B., Cui, J., Sun, J., Li, J., Han, X., Guo, J., et al. (2016) Immunolocalization of MMP9 and MMP2 in Osteolytic Metastasis Originating from MDA-MB-231 Human Breast Cancer Cells. Molecular Medicine Reports, 14, 1099-1106. https://doi.org/10.3892/mmr.2016.5374 |
[22] | Bure, I.V., Nemtsova, M.V. and Zaletaev, D.V. (2019) Roles of E-Cadherin and Noncoding RNAs in the Epithelial-Mesenchymal Transition and Progression in Gastric Cancer. International Journal of Molecular Sciences, 20, Article 2870. https://doi.org/10.3390/ijms20122870 |
[23] | Loh, C., Chai, J., Tang, T., Wong, W., Sethi, G., Shanmugam, M., et al. (2019) The E-Cadherin and N-Cadherin Switch in Epithelial-To-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells, 8, Article 1118. https://doi.org/10.3390/cells8101118 |
[24] | Luo, W., Liu, Q., Jiang, N., Li, M. and Shi, L. (2019) Isorhamnetin Inhibited Migration and Invasion via Suppression of Akt/ERK-Mediated Epithelial-To-Mesenchymal Transition (EMT) in A549 Human Non-Small-Cell Lung Cancer Cells. Bioscience Reports, 39, BSR20190159. https://doi.org/10.1042/bsr20190159 |
[25] | Mohebi, M., Ghafouri-Fard, S., Modarressi, M.H., Dashti, S., Zekri, A., Kholghi-Oskooei, V., et al. (2020) Expression Analysis of Vimentin and the Related lncRNA Network in Breast Cancer. Experimental and Molecular Pathology, 115, Article ID: 104439. https://doi.org/10.1016/j.yexmp.2020.104439 |
[26] | Kojio, K., Furukawa, M., Nonaka, Y. and Nakamura, S. (2010) Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment. Materials, 3, 5097-5110. https://doi.org/10.3390/ma3125097 |
[27] | Pereira, L.X., Viana, C.T.R., Orellano, L.A.A., Almeida, S.A., Vasconcelos, A.C., Goes, A.D.M., et al. (2017) Synthetic Matrix of Polyether-Polyurethane as a Biological Platform for Pancreatic Regeneration. Life Sciences, 176, 67-74. https://doi.org/10.1016/j.lfs.2017.03.015 |
[28] | Gabriel, L.P., Santos, M.E.M.d., Jardini, A.L., Bastos, G.N.T., Dias, C.G.B.T., Webster, T.J., et al. (2017) Bio-Based Polyurethane for Tissue Engineering Applications: How Hydroxyapatite Nanoparticles Influence the Structure, Thermal and Biological Behavior of Polyurethane Composites. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 201-208. https://doi.org/10.1016/j.nano.2016.09.008 |
[29] | Asadpour, S., Ai, J., Davoudi, P., Ghorbani, M., Jalali Monfared, M. and Ghanbari, H. (2018) In Vitro Physical and Biological Characterization of Biodegradable Elastic Polyurethane Containing Ferulic Acid for Small-Caliber Vascular Grafts. Biomedical Materials, 13, Article ID: 035007. https://doi.org/10.1088/1748-605x/aaa8b6 |
[30] | Sun, L., Wang, X., He, Y., Chen, B., Shan, B., Yang, J., et al. (2023) Polyurethane Scaffold-Based 3D Lung Cancer Model Recapitulates in Vivo Tumor Biological Behavior for Nanoparticulate Drug Screening. Regenerative Biomaterials, 10, rbad091. https://doi.org/10.1093/rb/rbad091 |