|
Material Sciences 2025
双交联壳聚糖基水凝胶的构建及其对Cu2+/Cd2+的高效吸附与再生机制研究
|
Abstract:
本研究通过自由基聚合与冻融循环协同策略,成功制备了一种双交联壳聚糖基水凝胶吸附剂(CISP)。该材料以衣康酸和甲基丙烯磺酸钠为接枝单体,通过化学交联剂(N,N’-亚甲基双丙烯酰胺)和物理交联骨架(聚乙烯醇)构建三维网络结构。系统研究了CISP对Cu2+与Cd2+的吸附行为及机理,并通过FTIR、XPS、SEM-EDS等表征手段揭示了其功能基团(-COO?,
, -OH)与金属离子的配位作用。实验表明:在pH 3~5、25℃、投加量3 g/L条件下,CISP对Cu2+与Cd2+的去除率分别达92.9%和91.2%;吸附过程符合伪二级动力学模型和Langmuir等温模型。此外,CISP在7次吸附–解吸循环后仍保持85%以上的去除率,并展现出对Ca2+/Mg2+干扰离子的耐受性。本研究为开发高效、可再生的重金属吸附材料提供了新思路。
A dual-crosslinked chitosan-based hydrogel adsorbent (CISP) was synthesized via a synergistic strategy combining free radical polymerization and freeze-thaw cycling. The three-dimensional network structure was constructed through chemical crosslinking with N,N’-methylenebisacrylamide and physical entanglement with polyvinyl alcohol, while functional groups (-COO?,
, -OH) were introduced via grafting of itaconic acid and sodium methacrylate sulfonate. The adsorption behaviors and mechanisms of CISP toward Cu2+ and Cd2+ were systematically investigated. FTIR and XPS analyses confirmed the coordination interactions between functional groups and metal ions. Under optimized conditions (pH 3~5, 25?C, dosage 3 g/L), CISP exhibited removal efficiencies of 92.9% for Cu2+ and 91.2% for Cd2+. The adsorption process followed pseudo-second-order kinetics and Langmuir isotherm models. Remarkably, CISP maintained over 85% removal efficiency after 7 adsorption-desorption cycles and demonstrated tolerance to competitive ions (Ca2+/Mg2+). This work highlights the potential of CISP as a sustainable and regenerable adsorbent for heavy metal remediation.
[1] | 李伟. 化工废水分质处理技术与资源化利用研究[J]. 工业用水与废水, 2025, 56(1): 71-74. |
[2] | Darban, Z., Shahabuddin, S., Gaur, R., Ahmad, I. and Sridewi, N. (2022) Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels, 8, Article No. 263. https://doi.org/10.3390/gels8050263 |
[3] | 李天泽, 马应霞, 李淼石, 等. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 267-278. |
[4] | Skotta, A., Jmiai, A., Elhayaoui, W., El-Asri, A., Tamimi, M., Assabbane, A., et al. (2023) Suspended Matter and Heavy Metals (Cu and Zn) Removal from Water by Coagulation/Flocculation Process Using a New Bio-Flocculant: Lepidium Sativum. Journal of the Taiwan Institute of Chemical Engineers, 145, Article ID: 104792. https://doi.org/10.1016/j.jtice.2023.104792 |
[5] | 尹云锌, 蒋志强, 李孝梅, 等. 3,4-连接高对称锌基无机-有机杂化材料的制备及其快速吸附有机染料性能的探究[J]. 冶金分析, 2025, 45(1): 46-53. |
[6] | 孙亚军, 郭娟, 徐智敏, 等. 我国煤矿区矿井水水质空间分布特征及矿井水处理技术思路[J]. 煤炭学报, 2025, 50(1): 584-599. |
[7] | 欧红香, 邓林蕾, 孙伟凯, 等. 硼酸盐改性凹凸棒土制备壳聚糖-羟乙基纤维素气凝胶吸附罗丹明B染料性能研究[J]. 水处理技术, 2025, 51(1): 34-39. |
[8] | Zhang, C., Quan, B., Tang, J., Cheng, K., Tang, Y., Shen, W., et al. (2023) China’s Wastewater Treatment: Status Quo and Sustainability Perspectives. Journal of Water Process Engineering, 53, Article ID: 103708. https://doi.org/10.1016/j.jwpe.2023.103708 |
[9] | Onoka, I. and Hilonga, A. (2025) Synthesis and Characterization of Amino-Functionalized Chitosan-Silica Nanocomposite for the Removal of Cu2+ from Waste Water. Discover Materials, 5, Article No. 28. https://doi.org/10.1007/s43939-025-00215-9 |
[10] | Weerasundara, L., Gabriele, B., Figoli, A., Ok, Y. and Bundschuh, J. (2020) Hydrogels: Novel Materials for Contaminant Removal in Water—A Review. Critical Reviews in Environmental Science and Technology, 51, 1970-2014. https://doi.org/10.1080/10643389.2020.1776055 |
[11] | 王思永, 王思豪, 刘晓晓, 等. 天然聚合物水凝胶的设计与应用研究[J]. 精细与专用化学品, 2025, 33(3): 40-43. |
[12] | Miao, C., Huang, W., Li, K. and Yang, Y. (2024) Highly Efficient Removal of Adsorbed Cationic Dyes by Dual-Network Chitosan-Based Hydrogel. Environmental Research, 263, Article ID: 120195. https://doi.org/10.1016/j.envres.2024.120195 |
[13] | 吴开德, 马旭东, 杨海存, 等. 聚丙烯酰胺/桃胶多糖/凹凸棒土杂化水凝胶的制备与吸附性能[J]. 化工新型材料, 2025, 53(1): 207-212. |
[14] | Zhang, Y., Zhao, M., Cheng, Q., Wang, C., Li, H., Han, X., et al. (2021) Research Progress of Adsorption and Removal of Heavy Metals by Chitosan and Its Derivatives: A Review. Chemosphere, 279, Article ID: 130927. https://doi.org/10.1016/j.chemosphere.2021.130927 |
[15] | 狄军贞, 高梦晴, 姜洋洋, 等. 新型MOF/壳聚气凝胶去除Cu(Ⅱ)及环丙沙星[J]. 环境科学与技术, 2025, 48(3): 210-219. |
[16] | Tang, S., Yang, J., Lin, L., Peng, K., Chen, Y., Jin, S., et al. (2020) Construction of Physically Crosslinked Chitosan/Sodium Alginate/Calcium Ion Double-Network Hydrogel and Its Application to Heavy Metal Ions Removal. Chemical Engineering Journal, 393, Article ID: 124728. https://doi.org/10.1016/j.cej.2020.124728 |
[17] | Zhou, Z., Yang, J., Zhao, N., Wang, Y., Zheng, W., Guo, Y., et al. (2025) Accessing Renewable Magnetic Cellulose Nanofiber Adsorbent to Enhance Separation Efficiency for Adsorption and Recovery of Cd2+. International Journal of Biological Macromolecules, 296, Article ID: 139765. https://doi.org/10.1016/j.ijbiomac.2025.139765 |
[18] | 郭莹娟, 薛娟琴, 李国平. 壳聚糖基硫酸根印迹吸附材料的制备与性能[J]. 环境科学与技术, 2022, 45(1): 1-6. |
[19] | Pal, P., Pal, A., Nakashima, K. and Yadav, B.K. (2021) Applications of Chitosan in Environmental Remediation: A Review. Chemosphere, 266, Article ID: 128934. https://doi.org/10.1016/j.chemosphere.2020.128934 |
[20] | 蒋常金. 壳聚糖及其衍生物的化学改性与砷吸附性能研究[D]: [硕士学位论文]. 长沙: 中南大学, 2022. |
[21] | 潘一平, 彭书传, 周其胤, 等. 壳聚糖-聚乙烯醇微球去除电镀废水中Ni(Ⅱ)的研究[J]. 广东化工, 2025, 52(3): 21-24. |
[22] | Hussain, N.A. and Jasim, L.S. (2025) Effective Removal of Safranin O Dye from the Aqueous Solution Using a Novel Hydrogel Composite Kappa-Carrageenan-G-Poly(Acrylic Acid-Co-Itaconic Acid)/SWCNT-COOH. Chemistry Africa, 25, 7-21. https://doi.org/10.1007/s42250-025-01255-7 |
[23] | 许士杰, 杨旭, 朱丽莲, 等. 耐盐两性聚丙烯酰胺的合成及其性能评价[J]. 应用化工, 2024, 53(7): 1620-1629. |
[24] | Upadhyay, U., Sreedhar, I., Singh, S.A., Patel, C.M. and Anitha, K.L. (2021) Recent Advances in Heavy Metal Removal by Chitosan Based Adsorbents. Carbohydrate Polymers, 251, Article ID: 117000. https://doi.org/10.1016/j.carbpol.2020.117000 |
[25] | Fan, X., Wang, X., Cai, Y., Xie, H., Han, S. and Hao, C. (2022) Functionalized Cotton Charcoal/Chitosan Biomass-Based Hydrogel for Capturing Pb2+, Cu2+ and Mb. Journal of Hazardous Materials, 423, Article ID: 127191. https://doi.org/10.1016/j.jhazmat.2021.127191 |
[26] | Li, L., Zhao, L., Ma, J. and Tian, Y. (2020) Preparation of Graphene Oxide/Chitosan Complex and Its Adsorption Properties for Heavy Metal Ions. Green Processing and Synthesis, 9, 294-303. https://doi.org/10.1515/gps-2020-0030 |
[27] | Pavithra, S., Thandapani, G., Alkhamis, H.H., Alrefaei, A.F., et al. (2021) Batch Adsorption Studies on Surface Tailored Chitosan/Orange Peel Hydrogel Composite for the Removal of Cr(VI) and Cu(II) Ions from Synthetic Wastewater. Chemosphere, 271, Article ID: 129415. https://doi.org/10.1016/j.chemosphere.2020.129415 |
[28] | 李晔, 赵恒泽, 齐艺裴, 等. 钢渣吸附废水中重金属离子的研究现状[J]. 有色金属(冶炼部分), 2025(4): 84-94. |
[29] | 韩珏, 李佳欣, 崔红艳, 等. 改性玉米秸秆吸附磷的动力学和热力学特征研究[J]. 农业环境科学学报, 2020, 39(9): 2008-2014. |
[30] | 李秋铷, 蔡晶晶, 李华, 等. 几种无机与有机材料对镉的吸附和钝化效果比较[J]. 浙江农业学报, 2024, 36(12): 2774-2783. |
[31] | Wen, Y., Xue, C., Ji, D., Hou, Y., Li, K. and Li, Y. (2023) Eco-Friendly Enteromorpha Polysaccharides-Based Hydrogels for Heavy Metal Adsorption: From Waste to Efficient Materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, Article ID: 130531. https://doi.org/10.1016/j.colsurfa.2022.130531 |