全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正则化的连续时间马尔可夫分支过程的加权矩
Weighted Moments for the Limit of a Normalized Markov Branching Process

DOI: 10.12677/pm.2025.154147, PP. 472-476

Keywords: 加权矩,上临界的马尔可夫分支过程,正则化
Weighted Moments
, Supercritical Markov Branching Process, Normalized

Full-Text   Cite this paper   Add to My Lib

Abstract:

为一连续时间超临界马尔可夫分支过程,令 W 表示归一化种群数量 Z( t )/ e λt 的极限,其中 e λt 为该分支过程的均值。设 l 为在无穷远处缓变的正函数。本文证明:对任意 a>1 E W α l( W )< 当且仅当 E Y α l( Y )< ,其中 Y 为子代数目。
Let be a continuous-time supercritical Markov branching process, and let W be the limit of the normalized population size Z( t )/ e λt , where e λt is the mean of the branching process. Let l be a positive function slowly varying at . In this paper, we prove that for a>1 ,

References

[1]  Athreya, K.B. and Ney, P.E. (1972) Branching Processes. Springer.
[2]  Kolmogorov, A.N. and Dmitriev, N.A. (1945) On Stochastic Processes. In: Petrovsky, I.G., Ed., Proceedings of the Moscow Mathematical Society, Moscow University Press, 56-78.
[3]  Kolmogorov, A.N. and Dmitriev, N.A. (1938) Statistical Methods in Population Dynamics. Steklov Institute.
[4]  Sevastyanov, B.A. (1971) Branching Processes with Immigration. Theory of Probability and Its Applications, 16, 243-253.
[5]  Harris, T.E. (1966) The Theory of Branching Processes. Mir.
[6]  Bingham, N.H. and Doney, R.A. (1974) Asymptotic Properties of Supercritical Branching Processes I: The Galton-Watson Process. Advances in Applied Probability, 6, 711-731.
https://doi.org/10.2307/1426188
[7]  Alsmeyer, G. and Rösler, U. (2004) On the Existence of Moments of the Limit of a Normalized Supercritical Galton-Watson Process. Journal of Theoretical Probability, 17, 905-928.
https://doi.org/10.1007/s10959-004-0582-1
[8]  Liang, X. and Liu, Q. (2013) Weighted Moments for the Limit of a Normalized Supercritical Galton-Watson Process. Comptes Rendus. Mathématique, 351, 769-773.
https://doi.org/10.1016/j.crma.2013.09.015
[9]  Seneta, E. (1981) Estimation of the Spectral Radius of a Non-Negative Matrix. Linear Algebra and Its Applications, 37, 211-218.
[10]  Potter, M.H. (1958) A Contribution to the Theory of Branching Processes. Proceedings of the American Mathematical Society, 9, 147-155.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133