|
Pure Mathematics 2025
正则化的连续时间马尔可夫分支过程的加权矩
|
Abstract:
设为一连续时间超临界马尔可夫分支过程,令
表示归一化种群数量
的极限,其中
为该分支过程的均值。设
为在无穷远处缓变的正函数。本文证明:对任意
,
当且仅当
,其中
为子代数目。
Let be a continuous-time supercritical Markov branching process, and let
be the limit of the normalized population size
, where
is the mean of the branching process. Let
be a positive function slowly varying at
. In this paper, we prove that for
,
[1] | Athreya, K.B. and Ney, P.E. (1972) Branching Processes. Springer. |
[2] | Kolmogorov, A.N. and Dmitriev, N.A. (1945) On Stochastic Processes. In: Petrovsky, I.G., Ed., Proceedings of the Moscow Mathematical Society, Moscow University Press, 56-78. |
[3] | Kolmogorov, A.N. and Dmitriev, N.A. (1938) Statistical Methods in Population Dynamics. Steklov Institute. |
[4] | Sevastyanov, B.A. (1971) Branching Processes with Immigration. Theory of Probability and Its Applications, 16, 243-253. |
[5] | Harris, T.E. (1966) The Theory of Branching Processes. Mir. |
[6] | Bingham, N.H. and Doney, R.A. (1974) Asymptotic Properties of Supercritical Branching Processes I: The Galton-Watson Process. Advances in Applied Probability, 6, 711-731. https://doi.org/10.2307/1426188 |
[7] | Alsmeyer, G. and Rösler, U. (2004) On the Existence of Moments of the Limit of a Normalized Supercritical Galton-Watson Process. Journal of Theoretical Probability, 17, 905-928. https://doi.org/10.1007/s10959-004-0582-1 |
[8] | Liang, X. and Liu, Q. (2013) Weighted Moments for the Limit of a Normalized Supercritical Galton-Watson Process. Comptes Rendus. Mathématique, 351, 769-773. https://doi.org/10.1016/j.crma.2013.09.015 |
[9] | Seneta, E. (1981) Estimation of the Spectral Radius of a Non-Negative Matrix. Linear Algebra and Its Applications, 37, 211-218. |
[10] | Potter, M.H. (1958) A Contribution to the Theory of Branching Processes. Proceedings of the American Mathematical Society, 9, 147-155. |