%0 Journal Article %T 正则化的连续时间马尔可夫分支过程的加权矩
Weighted Moments for the Limit of a Normalized Markov Branching Process %A 罗艳 %J Pure Mathematics %P 472-476 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.154147 %X 设为一连续时间超临界马尔可夫分支过程,令 W 表示归一化种群数量 Z( t )/ e λt 的极限,其中 e λt 为该分支过程的均值。设 l 为在无穷远处缓变的正函数。本文证明:对任意 a>1 E W α l( W )< 当且仅当 E Y α l( Y )< ,其中 Y 为子代数目。
Let be a continuous-time supercritical Markov branching process, and let W be the limit of the normalized population size Z( t )/ e λt , where e λt is the mean of the branching process. Let l be a positive function slowly varying at . In this paper, we prove that for a>1 , %K 加权矩, %K 上临界的马尔可夫分支过程, %K 正则化
Weighted Moments %K Supercritical Markov Branching Process %K Normalized %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113237