|
Pure Mathematics 2025
随机热方程的拟似然估计
|
Abstract:
我们使用拟似然方法研究了随机热方程的参数估计问题,该方程为:
其初始条件u(0, x) = 0, ˙W 是时空白噪声,Δ 为拉普拉斯算子。假设解关于时间可以离散观测,
我们给出了参数θ 的估计量,并基于Malliavin 微积分得到估计量的渐近行为。
In this paper, we investigate the parameter estimation of stochastic heat equation by
using the quasi-likelihood method. The equation is given by:
with u(0, x) = 0, where ˙W is a space-time white noise and Δ is Lapalacian. Assuming
that the temporal process can be discretely observed, we provide an estimator for the
parameter θ and derive the asymptotic behavior of the estimator based on Malliavin
calculus.
[1] | Chong, C. (2020) High-Frequency Analysis of Parabolic Stochastic PDEs. The Annals of Statistics,48, 1143-1167. https://doi.org/10.1214/19-aos1841 |
[2] | Cialenco, I. (2018) Statistical Inference for SPDEs: An Overview. Statistical Inference for
Stochastic Processes, 21, 309-329. https://doi.org/10.1007/s11203-018-9177-9 |
[3] | Cialenco, I. and Glatt-Holtz, N. (2011) Parameter Estimation for the Stochastically Perturbed
Navier-Stokes Equations. Stochastic Processes and their Applications, 121, 701-724.
https://doi.org/10.1016/j.spa.2010.12.007 |
[4] | Cialenco, I. and Huang, Y. (2019) A Note on Parameter Estimation for Discretely Sampled
SPDEs. Stochastics and Dynamics, 20, 2050016. https://doi.org/10.1142/s0219493720500161 |
[5] | Cialenco, I., Kim, H. and Lototsky, S.V. (2019) Statistical Analysis of Some Evolution Equations
Driven by Space-Only Noise. Statistical Inference for Stochastic Processes, 23, 83-103.
https://doi.org/10.1007/s11203-019-09205-0 |
[6] | Cialenco, I., Lototsky, S.V. and Pospí?il, J. (2009) Asymptotic Properties of the Maximum
Likelihood Estimator For Stochastic Parabolic Equations with Additive Fractional Brownian
Motion. Stochastics and Dynamics, 9, 169-185. https://doi.org/10.1142/s0219493709002610 |
[7] | Hildebrandt, F. and Trabs, M. (2021) Parameter Estimation for SPDEs Based on Discrete
Observations in Time and Space. Electronic Journal of Statistics, 15, 2716-2776.
https://doi.org/10.1214/21-ejs1848 |
[8] | Markussen, B. (2003) Likelihood Inference for a Discretely Observed Stable Processde.
Bernoulli, 9, 745-762.
https://doi.org/10.3150/bj/1066418876 |
[9] | Maslowski, B. and Pospí?il, J. (2007) Ergodicity and Parameter Estimates for Infinite-
Dimensional Fractional Ornstein-Uhlenbeck Process. Applied Mathematics and Optimization, |
[10] | Pospí?il, J. and Tribe, R. (2007) Parameter Estimates and Exact Variations for Stochastic
Heat Equations Driven by Space-Time White Noise. Stochastic Analysis and Applications, 25,593-611. https://doi.org/10.1080/07362990701282849 |
[11] | Torres, S., Tudor, C. and Viens, F. (2014) Quadratic Variations for the Fractional-Colored
Stochastic Heat Equation. Electronic Journal of Probability, 19, 1-51.
https://doi.org/10.1214/ejp.v19-2698 |
[12] | Nourdin, I. and Peccati, G. (2012) Normal Approximations with Malliavin Calculus. Cambridge
University Press. https://doi.org/10.1017/cbo9781139084659 |