%0 Journal Article %T 随机热方程的拟似然估计
Quasi-Likelihood Estimation ofStochastic Heat Equation %A 盖子若 %A 杨晗璐 %A 闫理坦 %J Pure Mathematics %P 317-329 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.154135 %X 我们使用拟似然方法研究了随机热方程的参数估计问题,该方程为:tu(t,x)=12Δu(t,x)+θW˙(t,x)(t0, xR) 其初始条件u(0, x) = 0, ˙W 是时空白噪声,Δ 为拉普拉斯算子。假设解关于时间可以离散观测, 我们给出了参数θ 的估计量,并基于Malliavin 微积分得到估计量的渐近行为。
In this paper, we investigate the parameter estimation of stochastic heat equation by using the quasi-likelihood method. The equation is given by: tu(t,x)=12Δu(t,x)+θW˙(t,x)(t0, xR) with u(0, x) = 0, where ˙W is a space-time white noise and Δ is Lapalacian. Assuming that the temporal process can be discretely observed, we provide an estimator for the parameter θ and derive the asymptotic behavior of the estimator based on Malliavin calculus. %K 随机热方程,时空白噪声,马列万分析,拟似然,参数估计
Stochastic Heat Equation %K Space-Time White Noise %K Malliavin Calculus %K Quasi-Likelihood %K Parameter Estimates %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113229