全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dini型多线性极大奇异积分算子与Lipschitz函数生成的广义交换子的有界性
Boundedness of Generalized Commutators with Dini Type Multilinear Maximal Calder′on-Zygmund Operators andLipschitz Functions

DOI: 10.12677/pm.2025.154141, PP. 394-408

Keywords: 奇异积分算子,广义交换子,Lipschitz函数,多线性算子
Singular Integral Operator
, Generalized Commutator, Lipschitz Function, Multilinear Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

设T是核满足Dini条件的多线性奇异积分算子,T是T的极大算子。Tb,S是T与一类可测函数{bi}i=1生成的广义交换子。本文讨论了当{bi}i=1属于Lipschitz空间,Tb,S在Lebesgue 空间的有界性。
Let T be an m-linear Calder′on-Zygmund operator with kernel satisfying Dini-type condition, Tbe the maximal operator of T. Tb,Sis the generalized commutator of T with a class of measurable functions {bi}i=1.In this paper, we discuss the boundedness of Tb,S on Lebesgue spaces when {bi}i=1 belongs to Lipschitz spaces.

References

[1]  Calderon, A.P. and Zygmund, A. (1952) On the Existence of Certain Singular Integrals. Acta Mathematica, 88, 85-139.
https://doi.org/10.1007/bf02392130
[2]  Fefferman, C. and Stein, E.M. (1972) Hp Spaces of Several Variables. Acta Mathematica, 129, 137-193.
https://doi.org/10.1007/bf02392215
[3]  Buckley, S.M. (1993) Estimates for Operator Norms on Weighted Spaces and Reverse Jensen Inequalities. Transactions of the American Mathematical Society, 340, 253-272.
https://doi.org/10.1090/s0002-9947-1993-1124164-0
[4]  Segovia, C. and Torrea, J.L. (1991) Weighted Inequalities for Commutators of Fractional and Singular Integrals. Publicacions Matem`atiques, 35, 209-235.
https://doi.org/10.5565/publmat 35191 09
[5]  Alphonse, A.M. (2000) An End Point Estimate for Maximal Commutators. The Journal of Fourier Analysis and Applications, 6, 449-456.
https://doi.org/10.1007/bf02510149
[6]  Zhang, P. (2006) Weighted Estimates for Maximal Multilinear Commutators. Mathematische Nachrichten, 279, 445-462.
https://doi.org/10.1002/mana.200310370
[7]  Xue, Q. (2013) Weighted Estimates for the Iterated Commutators of Multilinear Maximal and Fractional Type Operators. Studia Mathematica, 217, 97-122.
https://doi.org/10.4064/sm217-2-1
[8]  Xue, Q. and Yan, J. (2016) Generalized Commutators of Multilinear Calder′on-Zygmund Type Operators. Journal of the Mathematical Society of Japan, 68, 1161-118.
https://doi.org/10.2969/jmsj/06831161
[9]  P′erez, C. and Trujillo-Gonz′alez, R. (2002) Sharp Weighted Estimates for Multilinear Commu tators. Journal of the London Mathematical Society, 65, 672-692.
https://doi.org/10.1112/s0024610702003174
[10]  Lerner, A.K., Ombrosi, S., P′erez, C., Torres, R.H. and Trujillo-Gonz′alez, R. (2009) New Max imal Functions and Multiple Weights for the Multilinear Calder′on-Zygmund Theory. Advances in Mathematics, 220, 1222-1264.
https://doi.org/10.1016/j.aim.2008.10.014
[11]  P′erez, C., Pradolini, G., Torres, R.H. and Trujillo-Gonz′alez, R. (2013) End-Point Estimates for Iterated Commutators of Multilinear Singular Integrals. Bulletin of the London Mathematical Society, 46, 26-42.
https://doi.org/10.1112/blms/bdt065
[12]  Xue, Q., Yabuta, K. and Yan, J. (2021) Weighted Fr′echet-Kolmogorov Theorem and Com pactness of Vector-Valued Multilinear Operators. The Journal of Geometric Analysis, 31, 9891-9914.
https://doi.org/10.1007/s12220-021-00630-3
[13]  Liu, H.H., Si, Z.Y. and Wang, L. (2023) Some Estimates for Generalized Commutators of Multilinear Calder′on-Zygmund Operators. Bulletin of the Korean Mathematical Society, 60, 541-560.
[14]  Yabuta, K. (1985) Generalizations of Calder′on-Zygmund Operators. Studia Mathematica, 82, 17-31.
https://doi.org/10.4064/sm-82-1-17-31
[15]  Coifman, R.R. and Meyer, Y. (1978) Au del′a des op′erateurs pseudo-diff′erentiels. Ast′erisque, 57, 1-185.
[16]  Maldonado, D. and Naibo, V. (2008) Weighted Norm Inequalities for Paraproducts and Bi linear Pseudodifferential Operators with Mild Regularity. Journal of Fourier Analysis and Applications, 15, 218-261.
https://doi.org/10.1007/s00041-008-9029-x
[17]  Lu, G. and Zhang, P. (2014) Multilinear Calder′on-Zygmund Operators with Kernels of Dini’s Type and Applications. Nonlinear Analysis: Theory, Methods & Applications, 107, 92-117.
https://doi.org/10.1016/j.na.2014.05.005
[18]  Grafakos, L. and Torres, R.H. (2002) Multilinear Calder′on-Zygmund Theory. Advances in Mathematics, 165, 124-164.
https://doi.org/10.1006/aima.2001.2028
[19]  Sun, J. and Zhang, P. (2017) Commutators of Multilinear Calder′on-Zygmund Operators with Dini Type Kernels on Some Function Spaces. The Journal of Nonlinear Sciences and Applica tions, 10, 5002-5019.
https://doi.org/10.22436/jnsa.010.09.38
[20]  Zhang, P. and Sun, J. (2019) Commutators of Multilinear Calder′on-Zygmund Operators with Kernels of Dini’s Type and Applications. Journal of Mathematical Inequalities, 13, 1071-1093.
https://doi.org/10.7153/jmi-2019-13-76
[21]  Sun, J. (2022) Weighted Lipschitz Estimates for Commutators of Multilinear Calder′on Zygmund Operators with Dini Type Kernels. Journal of Inequalities and Applications, 2022, Article No. 149.
https://doi.org/10.1186/s13660-022-02888-9
[22]  P′erez, C. and Trujillo-Gonz′alez, R. (2003) Sharp Weighted Estimates for Vector-Valued Singular Integral Operators and Commutators. Tohoku Mathematical Journal, 55, 109-129.
https://doi.org/10.2748/tmj/1113247449
[23]  Garc′?a-Cuerva, J. and Rubio de Francia, J.L. (1985) Weighted Norm Inequalities and Related Topics. In: North-Holland Mathematics Studies, Vol. 116, Elsevier.
[24]  Chanillo, S. (1982) A Note on Commutators. Indiana University Mathematics Journal, 31, 7-16.
https://doi.org/10.1512/iumj.1982.31.31002
[25]  Paluszynski, M. (1995) Characterization of the Besov Spaces via the Commutator Operator of Coifman, Rochberg and Weiss. Indiana University Mathematics Journal, 44, 1-18.
https://doi.org/10.1512/iumj.1995.44.1976
[26]  Si, Z. and Xue, Q. (2016) A Note on Vector-Valued Maximal Multilinear Operators and Their Commutators. Mathematical Inequalities & Applications, 19, 249-262.
https://doi.org/10.7153/mia-19-18
[27]  de Francia, J.R., Ruiz, F.J. and Torrea, J. (1986) Calder′on-Zygmund Theory for Operator Valued Kernels. Advances in Mathematics, 62, 7-48.
https://doi.org/10.1016/0001-8708(86)90086-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133