|
Pure Mathematics 2025
Dini型多线性极大奇异积分算子与Lipschitz函数生成的广义交换子的有界性
|
Abstract:
设T是核满足Dini条件的多线性奇异积分算子,T?是T的极大算子。T?b,S是T?与一类可测函数{bi}∞i=1生成的广义交换子。本文讨论了当{bi}∞i=1属于Lipschitz空间,T?b,S在Lebesgue 空间的有界性。
Let T be an m-linear Calder′on-Zygmund operator with kernel satisfying Dini-type condition, T?be the maximal operator of T. T?b,Sis the generalized commutator of T? with a class of measurable functions {bi}∞i=1.In this paper, we discuss the boundedness of T?b,S on Lebesgue spaces when {bi}∞i=1 belongs to Lipschitz spaces.
[1] | Calderon, A.P. and Zygmund, A. (1952) On the Existence of Certain Singular Integrals. Acta
Mathematica, 88, 85-139. https://doi.org/10.1007/bf02392130 |
[2] | Fefferman, C. and Stein, E.M. (1972) Hp Spaces of Several Variables. Acta Mathematica, 129,
137-193. https://doi.org/10.1007/bf02392215 |
[3] | Buckley, S.M. (1993) Estimates for Operator Norms on Weighted Spaces and Reverse Jensen
Inequalities. Transactions of the American Mathematical Society, 340, 253-272.
https://doi.org/10.1090/s0002-9947-1993-1124164-0 |
[4] | Segovia, C. and Torrea, J.L. (1991) Weighted Inequalities for Commutators of Fractional and
Singular Integrals. Publicacions Matem`atiques, 35, 209-235.
https://doi.org/10.5565/publmat 35191 09 |
[5] | Alphonse, A.M. (2000) An End Point Estimate for Maximal Commutators. The Journal of
Fourier Analysis and Applications, 6, 449-456. https://doi.org/10.1007/bf02510149 |
[6] | Zhang, P. (2006) Weighted Estimates for Maximal Multilinear Commutators. Mathematische
Nachrichten, 279, 445-462. https://doi.org/10.1002/mana.200310370 |
[7] | Xue, Q. (2013) Weighted Estimates for the Iterated Commutators of Multilinear Maximal and
Fractional Type Operators. Studia Mathematica, 217, 97-122.
https://doi.org/10.4064/sm217-2-1 |
[8] | Xue, Q. and Yan, J. (2016) Generalized Commutators of Multilinear Calder′on-Zygmund Type
Operators. Journal of the Mathematical Society of Japan, 68, 1161-118.
https://doi.org/10.2969/jmsj/06831161 |
[9] | P′erez, C. and Trujillo-Gonz′alez, R. (2002) Sharp Weighted Estimates for Multilinear Commu tators. Journal of the London Mathematical Society, 65, 672-692.
https://doi.org/10.1112/s0024610702003174 |
[10] | Lerner, A.K., Ombrosi, S., P′erez, C., Torres, R.H. and Trujillo-Gonz′alez, R. (2009) New Max imal Functions and Multiple Weights for the Multilinear Calder′on-Zygmund Theory. Advances
in Mathematics, 220, 1222-1264. https://doi.org/10.1016/j.aim.2008.10.014 |
[11] | P′erez, C., Pradolini, G., Torres, R.H. and Trujillo-Gonz′alez, R. (2013) End-Point Estimates for
Iterated Commutators of Multilinear Singular Integrals. Bulletin of the London Mathematical
Society, 46, 26-42. https://doi.org/10.1112/blms/bdt065 |
[12] | Xue, Q., Yabuta, K. and Yan, J. (2021) Weighted Fr′echet-Kolmogorov Theorem and Com pactness of Vector-Valued Multilinear Operators. The Journal of Geometric Analysis, 31,
9891-9914. https://doi.org/10.1007/s12220-021-00630-3 |
[13] | Liu, H.H., Si, Z.Y. and Wang, L. (2023) Some Estimates for Generalized Commutators of
Multilinear Calder′on-Zygmund Operators. Bulletin of the Korean Mathematical Society, 60,
541-560. |
[14] | Yabuta, K. (1985) Generalizations of Calder′on-Zygmund Operators. Studia Mathematica, 82,
17-31. https://doi.org/10.4064/sm-82-1-17-31 |
[15] | Coifman, R.R. and Meyer, Y. (1978) Au del′a des op′erateurs pseudo-diff′erentiels. Ast′erisque,
57, 1-185. |
[16] | Maldonado, D. and Naibo, V. (2008) Weighted Norm Inequalities for Paraproducts and Bi linear Pseudodifferential Operators with Mild Regularity. Journal of Fourier Analysis and
Applications, 15, 218-261. https://doi.org/10.1007/s00041-008-9029-x |
[17] | Lu, G. and Zhang, P. (2014) Multilinear Calder′on-Zygmund Operators with Kernels of Dini’s
Type and Applications. Nonlinear Analysis: Theory, Methods & Applications, 107, 92-117.
https://doi.org/10.1016/j.na.2014.05.005 |
[18] | Grafakos, L. and Torres, R.H. (2002) Multilinear Calder′on-Zygmund Theory. Advances in
Mathematics, 165, 124-164. https://doi.org/10.1006/aima.2001.2028 |
[19] | Sun, J. and Zhang, P. (2017) Commutators of Multilinear Calder′on-Zygmund Operators with
Dini Type Kernels on Some Function Spaces. The Journal of Nonlinear Sciences and Applica tions, 10, 5002-5019. https://doi.org/10.22436/jnsa.010.09.38 |
[20] | Zhang, P. and Sun, J. (2019) Commutators of Multilinear Calder′on-Zygmund Operators with
Kernels of Dini’s Type and Applications. Journal of Mathematical Inequalities, 13, 1071-1093.
https://doi.org/10.7153/jmi-2019-13-76 |
[21] | Sun, J. (2022) Weighted Lipschitz Estimates for Commutators of Multilinear Calder′on Zygmund Operators with Dini Type Kernels. Journal of Inequalities and Applications, 2022,
Article No. 149. https://doi.org/10.1186/s13660-022-02888-9 |
[22] | P′erez, C. and Trujillo-Gonz′alez, R. (2003) Sharp Weighted Estimates for Vector-Valued
Singular Integral Operators and Commutators. Tohoku Mathematical Journal, 55, 109-129.
https://doi.org/10.2748/tmj/1113247449 |
[23] | Garc′?a-Cuerva, J. and Rubio de Francia, J.L. (1985) Weighted Norm Inequalities and Related
Topics. In: North-Holland Mathematics Studies, Vol. 116, Elsevier. |
[24] | Chanillo, S. (1982) A Note on Commutators. Indiana University Mathematics Journal, 31,
7-16. https://doi.org/10.1512/iumj.1982.31.31002 |
[25] | Paluszynski, M. (1995) Characterization of the Besov Spaces via the Commutator Operator
of Coifman, Rochberg and Weiss. Indiana University Mathematics Journal, 44, 1-18.
https://doi.org/10.1512/iumj.1995.44.1976 |
[26] | Si, Z. and Xue, Q. (2016) A Note on Vector-Valued Maximal Multilinear Operators and Their
Commutators. Mathematical Inequalities & Applications, 19, 249-262.
https://doi.org/10.7153/mia-19-18 |
[27] | de Francia, J.R., Ruiz, F.J. and Torrea, J. (1986) Calder′on-Zygmund Theory for Operator Valued Kernels. Advances in Mathematics, 62, 7-48.
https://doi.org/10.1016/0001-8708(86)90086-1 |