%0 Journal Article
%T Dini型多线性极大奇异积分算子与Lipschitz函数生成的广义交换子的有界性
Boundedness of Generalized Commutators with Dini Type Multilinear Maximal Calder′on-Zygmund Operators andLipschitz Functions
%A 卢景瑶
%J Pure Mathematics
%P 394-408
%@ 2160-7605
%D 2025
%I Hans Publishing
%R 10.12677/pm.2025.154141
%X 设T是核满足Dini条件的多线性奇异积分算子,T?是T的极大算子。T?b,S是T?与一类可测函数{bi}∞i=1生成的广义交换子。本文讨论了当{bi}∞i=1属于Lipschitz空间,T?b,S在Lebesgue 空间的有界性。
Let T be an m-linear Calder′on-Zygmund operator with kernel satisfying Dini-type condition, T?be the maximal operator of T. T?b,Sis the generalized commutator of T? with a class of measurable functions {bi}∞i=1.In this paper, we discuss the boundedness of T?b,S on Lebesgue spaces when {bi}∞i=1 belongs to Lipschitz spaces.
%K 奇异积分算子,广义交换子,Lipschitz函数,多线性算子
Singular Integral Operator
%K Generalized Commutator
%K Lipschitz Function
%K Multilinear Operator
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113113