%0 Journal Article %T Dini型多线性极大奇异积分算子与Lipschitz函数生成的广义交换子的有界性
Boundedness of Generalized Commutators with Dini Type Multilinear Maximal Calder′on-Zygmund Operators andLipschitz Functions %A 卢景瑶 %J Pure Mathematics %P 394-408 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.154141 %X 设T是核满足Dini条件的多线性奇异积分算子,T是T的极大算子。Tb,S是T与一类可测函数{bi}i=1生成的广义交换子。本文讨论了当{bi}i=1属于Lipschitz空间,Tb,S在Lebesgue 空间的有界性。
Let T be an m-linear Calder′on-Zygmund operator with kernel satisfying Dini-type condition, Tbe the maximal operator of T. Tb,Sis the generalized commutator of T with a class of measurable functions {bi}i=1.In this paper, we discuss the boundedness of Tb,S on Lebesgue spaces when {bi}i=1 belongs to Lipschitz spaces. %K 奇异积分算子,广义交换子,Lipschitz函数,多线性算子
Singular Integral Operator %K Generalized Commutator %K Lipschitz Function %K Multilinear Operator %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113113