全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

洱海流域地下水稳定同位素、水化学特征与补给转化规律研究
Research on Stable Isotopes, Hydrochemical Characteristics, and Recharge and Transformation Laws of Groundwater in the Erhai Lake Basin

DOI: 10.12677/sd.2025.154111, PP. 269-283

Keywords: 地下水,洱海流域,氢氧稳定同位素,水化学特征
Groundwater
, Erhai Basin, Hydrogen and Oxygen Stable Isotopes, Water Chemical Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

洱海流域处于澜沧江、金沙江和元江三江分水岭地带,地下水补给转化规律复杂。探究洱海流域地下水稳定同位素、水化学特征与补给转化规律对区域地下水资源开发和合理利用具有重要意义。本研究于2023年8月在洱海流域选取海西盆地、邓川盆地、洱源盆地、江尾–喜洲盆地、凤羽盆地和牛街–三营街盆地这六个典型的地下水系统进行采样,共采集58组地下水样品的稳定同位素和水化学数据,以及57组地表水和33组降水数据,综合运用描述性统计、空间分析、Piper三线图、Gibbs图及离子比值端元图方法研究区域地下水的补给转化规律。结果表明:① 洱海流域主要离子TDS和EC的统计特征呈现:井水 > 泉水,各地下水系统地下水TDS呈现:牛街–三营街盆地 > 邓川盆地 > 江尾–喜洲盆地 > 洱源盆地 > 海西盆地 > 凤羽盆地,阴离子 HCO 3 和阳离子中 Ca + 占主要优势,表明流域地下水总体流向为周边汇入洱海且流经路径上方解石和白云石等碳酸盐岩矿物普遍存在。② 研究区地下水水化学类型以 HCO 3 Ca 型为主,而泉水中 Na + 的平均浓度较井水相对较高,水中 HCO 3 CaNa 型占比显著增加,表明泉水受碳酸岩石风化作用更强。此外,除凤羽盆地地下水以 HCO 3 CaNa 型为主,其余五个地下水系统均以 HCO 3 CaMg 型为主,占比大都在65%以上。③ 研究区地下水化学特征主要受水岩相互作用和蒸发浓缩作用控制,其中井水受蒸发浓缩作用更显著;各地下水系统中,海西盆地地下水系统中水样TDS总体较低,地下水总体位于碳酸盐类、硅酸盐类及蒸发盐类中心。泉水受硅酸盐岩矿物及碳酸盐类矿物的风化溶解影响显著,井水受蒸发盐类矿物的风化溶解影响显著。④ 研究区地下水样品大部分 Na + SO 4

References

[1]  中国科学院. 地下水科学[M]. 北京: 科学出版社, 2018: 3-4.
[2]  Wang, H. and Zhang, Q. (2019) Research Advances in Identifying Sulfate Contamination Sources of Water Environment by Using Stable Isotopes. International Journal of Environmental Research and Public Health, 16, Article 1914.
https://doi.org/10.3390/ijerph16111914
[3]  张福初, 吴彬, 高凡, 等. 奎屯河流域平原区地下水水化学特征及成因分析[J]. 环境科学研究, 2021, 34(7): 1663-1671.
[4]  Jiang, Y., Zhang, C., Yuan, D., Zhang, G. and He, R. (2008) Impact of Land Use Change on Groundwater Quality in a Typical Karst Watershed of Southwest China: A Case Study of the Xiaojiang Watershed, Yunnan Province. Hydrogeology Journal, 16, 727-735.
https://doi.org/10.1007/s10040-007-0259-9
[5]  Ahirwar, S. and Shukla, J.P. (2018) Assessment of Groundwater Vulnerability in Upper Betwa River Watershed Using GIS Based DRASTIC Model. Journal of the Geological Society of India, 91, 334-340.
https://doi.org/10.1007/s12594-018-0859-0
[6]  Jarray, H., Zammouri, M., Ouessar, M., Zerrim, A. and Yahyaoui, H. (2017) GIS Based DRASTIC Model for Groundwater Vulnerability Assessment: Case Study of the Shallow Mio-Plio-Quaternary Aquifer (Southeastern Tunisia). Water Resources, 44, 595-603.
https://doi.org/10.1134/s0097807817040066
[7]  周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素[J]. 环境科学, 2014, 35(9): 3315-3324.
[8]  刘靖宇, 王浪, 卜丽娟, 等. 荒漠绿洲过渡带地下水氢氧稳定同位素、水化学特征及演化机理研究[J]. 干旱区资源与环境, 2023, 37(12): 92-102.
[9]  王慧玮, 郭小娇, 张千千, 等. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 2021, 40(12): 3838-3845.
[10]  朱亮, 刘景涛, 杨明楠, 等. 青海省北川河流域地下水水化学特征与水质评价[J]. 水土保持通报, 2022, 42(2): 235-241.
[11]  李政葵, 夏蔓宏, 董少刚, 等. 洛阳盆地浅层地下水化学特征及其演化特征分析[J]. 地球与环境, 2019, 47(1): 57-63.
[12]  曹文庚, 杨会峰, 高媛媛, 等. 南水北调中线受水区保定平原地下水质量演变预测研究[J]. 水利学报, 2020, 51(8): 924-935.
[13]  潘登, 王帅, 郭红, 等. 黄河下游(河南段)潜水水文地球化学特征及补给来源识别[J]. 安全与环境工程, 2024, 31(4): 170-180.
[14]  李小等, 常亮, 段瑞, 等. 和田河流域水化学特征与地下水补给来源分析[J]. 干旱区研究, 2024, 41(6): 917-927.
[15]  卢小慧, 王梦瑶, 龚绪龙, 等. 基于氢氧同位素的平原湖荡地表水与地下水转化研究[J]. 水利学报, 2024, 55(4): 416-427.
[16]  代彬, 郭巧玲, 陈梓楹, 等. 乌兰木伦河流域地下水水化学同位素特征及补给关系[J]. 水资源与水工程学报, 2023, 34(4): 15-22.
[17]  廖会娟, 柴勇, 角媛梅, 等. 高原山地-湖泊地区雨季地表水补给来源的空间格局及形成机制[J]. 地理学报, 2024, 79(7): 1862-1879.
[18]  裴森森, 罗艳云, 潘浩, 等. 基于稳定氢氧同位素的黄河流域内蒙古段水体转化关系[J]. 环境科学, 2024, 45(11): 6604-6615.
[19]  杨羽帆, 曹生奎, 冯起, 等. 青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征[J]. 中国沙漠, 2019, 39(5): 45-53.
[20]  戴蔓, 蒋小伟, 罗银飞, 等. 地热水氢氧同位素控制因素识别与定量计算: 以青海贵德盆地为例[J]. 地学前缘, 2021, 28(1): 420-427.
[21]  卫磊, 杨桂莲, 鲁程鹏, 等. 华北平原超采区浅层地下水埋深变化及控制因素分析[J]. 水资源与水工程学报, 2019, 30(6): 39-44.
[22]  袁瑞强, 龙西亭, 王鹏, 等. 氯离子质量平衡法应用问题刍议[J]. 水文, 2015, 35(4): 7-13.
[23]  Amiel, R.B., Grodek, T. and Frumkin, A. (2010) Characterization of the Hydrogeology of the Sacred Gihon Spring, Jerusalem: A Deteriorating Urban Karst Spring. Hydrogeology Journal, 18, 1465-1479.
https://doi.org/10.1007/s10040-010-0600-6
[24]  Gibbs, R.J. (1971) Response: Mechanisms Controlling World Water Chemistry: Evaporation-Crystallization Process. Science, 172, 871-872.
https://doi.org/10.1126/science.172.3985.871
[25]  孙厚云, 卫晓锋, 甘凤伟, 等. 滦河流域中上游富锶地下水成因类型与形成机制[J]. 地球学报, 2020, 41(1): 65-79.
[26]  张宏鑫, 吴亚, 罗炜宇, 等. 雷州半岛岭北地区地下水水文地球化学特征[J]. 环境科学, 2020, 41(11): 4924-4935.
[27]  沈贝贝, 吴敬禄, 吉力力∙阿不都外力, 等. 巴尔喀什湖流域水化学和同位素空间分布及环境特征[J]. 环境科学, 2020, 41(1): 173-182.
[28]  Dansgaard, W. (1964) Stable Isotopes in Precipitation. Tellus, 16, 436-468.
https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133