全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维粘性系数依赖于密度的不可压缩热传导Navier-Stokes方程的全局强解
Global Strong Solution for 3D Viscous Incompressible Heat Conducting Navier-Stokes Equations with Density-Dependent Viscosity

DOI: 10.12677/aam.2025.144210, PP. 826-842

Keywords: 全局强解,热传导Navier-Stokes方程,粘性相关密度,不可压缩
Global Strong Solution
, Heat Conducting Navier-Stokes Equations, Density-Dependent Viscosity, Incompressible

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了三维粘性系数依赖于密度的非齐次不可压缩热传导Navier-Stokes方程。首先,当粘性系数的梯度的范数满足 μ( ρ ) L ( 0,T; L p ) < 时,存在一个整体强解,此外,如果初始能量适当小,证明了三维粘性非齐次热传导变粘性Navier-Stokes方程整体强解的唯一性。
In this paper, we investigate an 3D viscosity incompressible heat conducting Navier-Stokes equations with density-dependent viscosity. First, we obtain that there exists a global strong solution provided the norm of the gradient of viscosity satisfies μ( ρ ) L ( 0,T; L p ) < . Moreover, if energy is suitably small, we show the uniqueness of the global strong solution to the three-dimensional viscous non-homogeneous heat conducting Navier-Stokes equations with variable viscosity.

References

[1]  Kazhikov, A.V. (1974) Resolution of Boundary Value Problems for Nonhomogeneous Viscous Fluids. Doklady Natsionalnoi Akademii Nauk Belarusi, 216, 1008-1010.
[2]  Jun Choe, H. and Kim, H. (2003) Strong Solutions of the Navier-Stokes Equations for Nonhomogeneous Incompressible Fluids. Communications in Partial Differential Equations, 28, 1183-1201.
https://doi.org/10.1081/pde-120021191
[3]  Huang, X. and Wang, Y. (2013) Global Strong Solution to the 2D Nonhomogeneous Incompressible MHD System. Journal of Differential Equations, 254, 511-527.
https://doi.org/10.1016/j.jde.2012.08.029
[4]  Danchin, R. and Mucha, P.B. (2018) The Incompressible Navier-Stokes Equations in Vacuum. Communications on Pure and Applied Mathematics, 72, 1351-1385.
https://doi.org/10.1002/cpa.21806
[5]  Zhang, X. and Tan, Z. (2015) The Global Wellposedness of the 3D Heat-Conducting Viscous Incompressible Fluids with Bounded Density. Nonlinear Analysis: Real World Applications, 22, 129-147.
https://doi.org/10.1016/j.nonrwa.2014.08.001
[6]  Guo, Z. and Li, Q. (2021) Global Existence and Large Time Behaviors of the Solutions to the Full Incompressible Navier-Stokes Equations with Temperature-Dependent Coefficients. Journal of Differential Equations, 274, 876-923.
https://doi.org/10.1016/j.jde.2020.10.031
[7]  Ladyzhenskaya, O.A. and Solonnikov, V.A. (1978) Unique Solvability of an Initial and Boundary-Value Problem for Viscous Incompressible Nonhomogeneous Fluids. Journal of Soviet Mathematics, 9, 697-749.
https://doi.org/10.1007/bf01085325
[8]  Itoh, S. and Tani, A. (1999) Solvability of Nonstationary Problems for Nonhomogeneous Incompressible Fluids and the Convergence with Vanishing Viscosity. Tokyo Journal of Mathematics, 22, 17-42.
https://doi.org/10.3836/tjm/1270041610
[9]  Padula, M. (1982) An Existence Theorem for Non-Homogeneous Incompressible Fluids. Rendiconti del Circolo Matematico di Palermo, 31, 119-124.
https://doi.org/10.1007/bf02849542
[10]  Padula, M. (1990) On the Existence and Uniqueness of Non-Homogeneous Motions in Exterior Domains. Mathematische Zeitschrift, 203, 581-604.
https://doi.org/10.1007/bf02570758
[11]  Salvi, R. (1991) The Equations of Viscous Incompressible Non-Homogeneous Fluids: On the Existence and Regularity. The Journal of the Australian Mathematical Society, Series B, Applied Mathematics, 33, 94-110.
https://doi.org/10.1017/s0334270000008651
[12]  Zhong, X. (2017) Global Strong Solution for 3D Viscous Incompressible Heat Conducting Navier-Stokes Flows with Non-Negative Density. Journal of Differential Equations, 263, 4978-4996.
https://doi.org/10.1016/j.jde.2017.06.004
[13]  Zhong, X. (2020) Global Existence and Large Time Behavior of Strong Solutions for 3D Nonhomogeneous Heat Conducting Navier-Stokes Equations. Journal of Mathematical Physics, 61, Article 111503.
https://doi.org/10.1063/5.0012871
[14]  Zhong, X. (2018) Global Strong Solution for Viscous Incompressible Heat Conducting Navier-Stokes Flows with Density-Dependent Viscosity. Analysis and Applications, 16, 623-647.
https://doi.org/10.1142/s0219530518500069
[15]  DiPerna, R.J. and Lions, P.L. (1988) Equations différentielles ordinaires et équations de transport avec descoefficients irréguliers. In: Séminaire Équations aux dérivées partielles (Polytechnique) dit aussiSéminaire Goulaouic-Schwartz”, 1-9.
[16]  Lions, P.L. (1996) Mathematical Topics in Fluid Mechanics: Volume I: Incompressible Models. Oxford University Press.
[17]  Desjardins, B. (1997) Regularity Results for Two-Dimensional Flows of Multiphase Viscous Fluids. Archive for Rational Mechanics and Analysis, 137, 135-158.
https://doi.org/10.1007/s002050050025
[18]  Abidi, H. and Zhang, P. (2015) On the Global Well-Posedness of 2-D Inhomogeneous Incompressible Navier-Stokes System with Variable Viscous Coefficient. Journal of Differential Equations, 259, 3755-3802.
https://doi.org/10.1016/j.jde.2015.05.002
[19]  Cho, Y. and Kim, H. (2004) Unique Solvability for the Density-Dependent Navier-Stokes Equations. Nonlinear Analysis: Theory, Methods & Applications, 59, 465-489.
https://doi.org/10.1016/j.na.2004.07.020
[20]  Liang, Z. (2015) Local Strong Solution and Blow-Up Criterion for the 2D Nonhomogeneous Incompressible Fluids. Journal of Differential Equations, 258, 2633-2654.
https://doi.org/10.1016/j.jde.2014.12.015
[21]  Lü, B., Shi, X. and Zhong, X. (2018) Global Existence and Large Time Asymptotic Behavior of Strong Solutions to the Cauchy Problem of 2D Density-Dependent Navier-Stokes Equations with Vacuum. Nonlinearity, 31, 2617-2632.
https://doi.org/10.1088/1361-6544/aab31f
[22]  Huang, X. and Wang, Y. (2014) Global Strong Solution with Vacuum to the Two Dimensional Density-Dependent Navier-Stokes System. SIAM Journal on Mathematical Analysis, 46, 1771-1788.
https://doi.org/10.1137/120894865
[23]  Wang, W., Yu, H. and Zhang, P. (2018) Global Strong Solutions for 3D Viscous Incompressible Heat Conducting Navier-Stokes Flows with the General External Force. Mathematical Methods in the Applied Sciences, 41, 4589-4601.
https://doi.org/10.1002/mma.4915
[24]  Zhong, X. (2022) Global Existence and Large Time Behavior of Strong Solutions for Nonhomogeneous Heat Conducting Navier-Stokes Equations with Large Initial Data and Vacuum. Communications in Mathematical Sciences, 20, 1193-1209.
https://doi.org/10.4310/cms.2022.v20.n5.a1
[25]  Cho, Y. and Kim, H. (2008) Existence Result for Heat-Conducting Viscous Incompressible Fluids with Vacuum. Journal of the Korean Mathematical Society, 45, 645-681.
https://doi.org/10.4134/jkms.2008.45.3.645

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133