%0 Journal Article %T 三维粘性系数依赖于密度的不可压缩热传导Navier-Stokes方程的全局强解
Global Strong Solution for 3D Viscous Incompressible Heat Conducting Navier-Stokes Equations with Density-Dependent Viscosity %A 王智辉 %J Advances in Applied Mathematics %P 826-842 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.144210 %X 本文研究了三维粘性系数依赖于密度的非齐次不可压缩热传导Navier-Stokes方程。首先,当粘性系数的梯度的范数满足 μ( ρ ) L ( 0,T; L p ) < 时,存在一个整体强解,此外,如果初始能量适当小,证明了三维粘性非齐次热传导变粘性Navier-Stokes方程整体强解的唯一性。
In this paper, we investigate an 3D viscosity incompressible heat conducting Navier-Stokes equations with density-dependent viscosity. First, we obtain that there exists a global strong solution provided the norm of the gradient of viscosity satisfies μ( ρ ) L ( 0,T; L p ) < . Moreover, if energy is suitably small, we show the uniqueness of the global strong solution to the three-dimensional viscous non-homogeneous heat conducting Navier-Stokes equations with variable viscosity. %K 全局强解, %K 热传导Navier-Stokes方程, %K 粘性相关密度, %K 不可压缩
Global Strong Solution %K Heat Conducting Navier-Stokes Equations %K Density-Dependent Viscosity %K Incompressible %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113019