全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

调节性细胞死亡在子痫前期中的作用
The Role of Regulatory Cell Death in Preeclampsia

DOI: 10.12677/acm.2025.1541145, PP. 1983-1988

Keywords: 子痫前期,调节性细胞死亡,凋亡,自噬,焦亡,铁死亡,铜死亡
Preeclampsia
, Regulated Cell Death, Apoptosis, Autophagy, Pyroptosis, Ferroptosis, Cuprotosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

子痫前期是一种发病机制复杂的妊娠期疾病,可能涉及到多种调节性细胞死亡方式,如细胞凋亡、自噬、焦亡、铁死亡和铜死亡等。将子痫前期与调节性细胞死亡联系起来,有助于更加全面深入地了解子痫前期的病理进程,为子痫前期的发生提供潜在的预测指标和新型诊疗方法。本文就近年来调节性细胞死亡与子痫前期的研究进展进行综述。
Preeclampsia is a pregnancy disease with a complex pathogenesis, which may involve multiple regulatory cell death modes such as apoptosis, autophagy, pyroptosis, ferroptosis, and copper death. Linking preeclampsia with regulatory cell death can help to gain a more comprehensive and in-depth understanding of the pathological process of preeclampsia, providing potential predictive indicators and novel diagnostic and therapeutic methods for its occurrence. This article reviews the research progress on regulatory cell death and preeclampsia in recent years.

References

[1]  Jung, E., Romero, R., Yeo, L., Gomez-Lopez, N., Chaemsaithong, P., Jaovisidha, A., et al. (2022) The Etiology of Preeclampsia. American Journal of Obstetrics and Gynecology, 226, S844-S866.
https://doi.org/10.1016/j.ajog.2021.11.1356
[2]  中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2020) [J]. 中华妇产科杂志, 2020, 55(4): 227-238.
[3]  Wu, Q., Ying, X., Yu, W., Li, H., Wei, W., Lin, X., et al. (2024) Comparison of Immune‐Related Gene Signatures and Immune Infiltration Features in Early‐ and Late‐Onset Preeclampsia. The Journal of Gene Medicine, 26, e3676.
https://doi.org/10.1002/jgm.3676
[4]  Abalos, E., Cuesta, C., Carroli, G., Qureshi, Z., Widmer, M., Vogel, J., et al. (2014) Pre‐Eclampsia, Eclampsia and Adverse Maternal and Perinatal Outcomes: A Secondary Analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG: An International Journal of Obstetrics & Gynaecology, 121, 14-24.
https://doi.org/10.1111/1471-0528.12629
[5]  Brown, M.A., Magee, L.A., Kenny, L.C., Karumanchi, S.A., McCarthy, F.P., Saito, S., et al. (2018) Hypertensive Disorders of Pregnancy. Hypertension, 72, 24-43.
https://doi.org/10.1161/hypertensionaha.117.10803
[6]  Ali, M., Ahmed, M., Memon, M., Chandio, F., Shaikh, Q., Parveen, A., et al. (2024) Preeclampsia: A Comprehensive Review. Clinica Chimica Acta, 563, Article ID: 119922.
https://doi.org/10.1016/j.cca.2024.119922
[7]  Galluzzi, L., Vitale, I., Aaronson, S.A., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 25, 486-541.
[8]  Vitale, I., et al. (2023) Apoptotic Cell Death in Disease—Current Understanding of the NCCD 2023. Cell Death and Differentiation, 30, 1097-1154.
[9]  Newton, K., Strasser, A., Kayagaki, N. and Dixit, V.M. (2024) Cell Death. Cell, 187, 235-256.
https://doi.org/10.1016/j.cell.2023.11.044
[10]  Lokeswara, A.W., Hiksas, R., Irwinda, R. and Wibowo, N. (2021) Preeclampsia: From Cellular Wellness to Inappropriate Cell Death, and the Roles of Nutrition. Frontiers in Cell and Developmental Biology, 9, Article ID: 726513.
https://doi.org/10.3389/fcell.2021.726513
[11]  Kerr, J.F.R., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257.
https://doi.org/10.1038/bjc.1972.33
[12]  Liu, L., Zhou, L., Wang, L., Zheng, P., Zhang, F., Mao, Z., et al. (2023) Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. Journal of Inflammation Research, 16, 2727-2754.
https://doi.org/10.2147/jir.s417801
[13]  Hojo, T., Skarzynski, D.J. and Okuda, K. (2022) Apoptosis, Autophagic Cell Death, and Necroptosis: Different Types of Programmed Cell Death in Bovine Corpus Luteum Regression. Journal of Reproduction and Development, 68, 355-360.
https://doi.org/10.1262/jrd.2022-097
[14]  Heydarnezhad Asl, M., Pasban Khelejani, F., Bahojb Mahdavi, S.Z., Emrahi, L., Jebelli, A. and Mokhtarzadeh, A. (2022) The Various Regulatory Functions of Long Noncoding RNAs in Apoptosis, Cell Cycle, and Cellular Senescence. Journal of Cellular Biochemistry, 123, 995-1024.
https://doi.org/10.1002/jcb.30221
[15]  Ames, E.G. and Thoene, J.G. (2022) Programmed Cell Death in Cystinosis. Cells, 11, Article No. 670.
https://doi.org/10.3390/cells11040670
[16]  Bakrania, B.A., George, E.M. and Granger, J.P. (2022) Animal Models of Preeclampsia: Investigating Pathophysiology and Therapeutic Targets. American Journal of Obstetrics and Gynecology, 226, S973-S987.
https://doi.org/10.1016/j.ajog.2020.10.025
[17]  Redman, C. (2014) The Six Stages of Pre-Eclampsia. Pregnancy Hypertension: An International Journal of Womens Cardiovascular Health, 4, Article No. 246.
https://doi.org/10.1016/j.preghy.2014.04.020
[18]  Redman, C.W.G. and Sargent, I.L. (2009) Placental Stress and Pre-Eclampsia: A Revised View. Placenta, 30, 38-42.
https://doi.org/10.1016/j.placenta.2008.11.021
[19]  Zhou, J., Zhao, Y., An, P., Zhao, H., Li, X. and Xiong, Y. (2023) Hsa_circ_0002348 Regulates Trophoblast Proliferation and Apoptosis through miR-126-3p/BAK1 Axis in Preeclampsia. Journal of Translational Medicine, 21, Article No. 509.
https://doi.org/10.1186/s12967-023-04240-1
[20]  Chen, H., Li, R., Bian, J., Li, X., Su, C., Wang, Y., et al. (2024) OLFML3 Suppresses Trophoblast Apoptosis via the PI3K/AKT Pathway: A Possible Therapeutic Target in Preeclampsia. Placenta, 147, 1-11.
https://doi.org/10.1016/j.placenta.2024.01.008
[21]  Zuo, Q., Zou, Y., Huang, S., Wang, T., Xu, Y., Zhang, T., et al. (2021) Aspirin Reduces Sflt-1-Mediated Apoptosis of Trophoblast Cells in Preeclampsia. Molecular Human Reproduction, 27, gaaa089.
https://doi.org/10.1093/molehr/gaaa089
[22]  de Duve, C. and Wattiaux, R. (1966) Functions of Lysosomes. Annual Review of Physiology, 28, 435-492.
https://doi.org/10.1146/annurev.ph.28.030166.002251
[23]  Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T. and Ohsumi, Y. (2008) Organization of the Pre-Autophagosomal Structure Responsible for Autophagosome Formation. Molecular Biology of the Cell, 19, 2039-2050.
https://doi.org/10.1091/mbc.e07-10-1048
[24]  Yoshii, S.R. and Mizushima, N. (2017) Monitoring and Measuring Autophagy. International Journal of Molecular Sciences, 18, Article No. 1865.
https://doi.org/10.3390/ijms18091865
[25]  Nakashima, A., Shima, T., Aoki, A., Kawaguchi, M., Yasuda, I., Tsuda, S., et al. (2020) Placental Autophagy Failure: A Risk Factor for Preeclampsia. Journal of Obstetrics and Gynaecology Research, 46, 2497-2504.
https://doi.org/10.1111/jog.14489
[26]  Nakashima, A., Cheng, S., Ikawa, M., Yoshimori, T., Huber, W.J., Menon, R., et al. (2019) Evidence for Lysosomal Biogenesis Proteome Defect and Impaired Autophagy in Preeclampsia. Autophagy, 16, 1771-1785.
https://doi.org/10.1080/15548627.2019.1707494
[27]  Gu, S., Zhou, C., Pei, J., Wu, Y., Wan, S., Zhao, X., et al. (2022) Esomeprazole Inhibits Hypoxia/Endothelial Dysfunction-Induced Autophagy in Preeclampsia. Cell and Tissue Research, 388, 181-194.
https://doi.org/10.1007/s00441-022-03587-z
[28]  Zychlinsky, A., Prevost, M.C. and Sansonetti, P.J. (1992) Shigella Flexneri Induces Apoptosis in Infected Macrophages. Nature, 358, 167-169.
https://doi.org/10.1038/358167a0
[29]  Cookson, B.T. and Brennan, M.A. (2001) Pro-Inflammatory Programmed Cell Death. Trends in Microbiology, 9, 113-114.
https://doi.org/10.1016/s0966-842x(00)01936-3
[30]  Monack, D.M., Navarre, W.W. and Falkow, S. (2001) Salmonella-Induced Macrophage Death: The Role of Caspase-1 in Death and Inflammation. Microbes and Infection, 3, 1201-1212.
https://doi.org/10.1016/s1286-4579(01)01480-0
[31]  Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C. and Chen, X. (2021) Pyroptosis: Mechanisms and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 128.
https://doi.org/10.1038/s41392-021-00507-5
[32]  温金, 李宁, 李梓汇, 等. 细胞焦亡与不良妊娠结局关系研究进展[J]. 山东第一医科大学(山东省医学科学院)学报, 2023, 44(1): 10-14.
[33]  Quan, X., Ye, J., Yang, X. and Xie, Y. (2021) Hoxa9-Induced Chemerin Signals through CMKLR1/AMPK/TXNIP/ NLRP3 Pathway to Induce Pyroptosis of Trophoblasts and Aggravate Preeclampsia. Experimental Cell Research, 408, Article ID: 112802.
https://doi.org/10.1016/j.yexcr.2021.112802
[34]  Liu, J. and Yang, W. (2023) Mechanism of Histone Deacetylase HDAC2 in FOXO3-Mediated Trophoblast Pyroptosis in Preeclampsia. Functional & Integrative Genomics, 23, Article No. 152.
https://doi.org/10.1007/s10142-023-01077-1
[35]  Wu, H., liu, K. and Zhang, J. (2022) LINC00240/miR-155 Axis Regulates Function of Trophoblasts and M2 Macrophage Polarization via Modulating Oxidative Stress-Induced Pyroptosis in Preeclampsia. Molecular Medicine, 28, Article No. 119.
https://doi.org/10.1186/s10020-022-00531-3
[36]  Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[37]  Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285.
https://doi.org/10.1016/j.cell.2017.09.021
[38]  Ingold, I., Berndt, C., Schmitt, S., et al. (2017) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21.
[39]  Gumilar, K.E., Priangga, B., Lu, C., Dachlan, E.G. and Tan, M. (2023) Iron Metabolism and Ferroptosis: A Pathway for Understanding Preeclampsia. Biomedicine & Pharmacotherapy, 167, Article ID: 115565.
https://doi.org/10.1016/j.biopha.2023.115565
[40]  Ng, S., Norwitz, S.G. and Norwitz, E.R. (2019) The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. International Journal of Molecular Sciences, 20, Article No. 3283.
https://doi.org/10.3390/ijms20133283
[41]  Zhang, H., He, Y., Wang, J., Chen, M., Xu, J., Jiang, M., et al. (2020) Mir-30-5p-Mediated Ferroptosis of Trophoblasts Is Implicated in the Pathogenesis of Preeclampsia. Redox Biology, 29, Article ID: 101402.
https://doi.org/10.1016/j.redox.2019.101402
[42]  Yang, X., Ding, Y., Sun, L., Shi, M., Zhang, P., Huang, Z., et al. (2022) Ferritin Light Chain Deficiency-Induced Ferroptosis Is Involved in Preeclampsia Pathophysiology by Disturbing Uterine Spiral Artery Remodelling. Redox Biology, 58, Article ID: 102555.
https://doi.org/10.1016/j.redox.2022.102555
[43]  Xu, X., Zhu, M., Zu, Y., Wang, G., Li, X. and Yan, J. (2024) Nox2 Inhibition Reduces Trophoblast Ferroptosis in Preeclampsia via the STAT3/GPX4 Pathway. Life Sciences, 343, Article ID: 122555.
https://doi.org/10.1016/j.lfs.2024.122555
[44]  Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261.
https://doi.org/10.1126/science.abf0529
[45]  Zhao, G., Sun, H., Zhang, T. and Liu, J. (2020) Copper Induce Zebrafish Retinal Developmental Defects via Triggering Stresses and Apoptosis. Cell Communication and Signaling, 18, Article No. 45.
https://doi.org/10.1186/s12964-020-00548-3
[46]  Sak, S., Barut, M., Çelik, H., Incebiyik, A., Ağaçayak, E., Uyanikoglu, H., et al. (2018) Copper and Ceruloplasmin Levels Are Closely Related to the Severity of Preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine, 33, 96-102.
https://doi.org/10.1080/14767058.2018.1487934
[47]  Zhong, Z., Yang, Q., Sun, T. and Wang, Q. (2022) A Global Perspective of Correlation between Maternal Copper Levels and Preeclampsia in the 21st Century: A Systematic Review and Meta-Analysis. Frontiers in Public Health, 10, Article ID: 924103.
https://doi.org/10.3389/fpubh.2022.924103
[48]  Song, X., Li, B., Li, Z., Wang, J. and Zhang, D. (2017) High Serum Copper Level Is Associated with an Increased Risk of Preeclampsia in Asians: A Meta-Analysis. Nutrition Research, 39, 14-24.
https://doi.org/10.1016/j.nutres.2017.01.004
[49]  Tang, X., Liu, Y. and Zhang, Y. (2024) Novel Cuproptosis-Related Prognostic Gene Profiles in Preeclampsia. BMC Pregnancy and Childbirth, 24, Article No. 53.
https://doi.org/10.1186/s12884-023-06215-y
[50]  Shen, X., Huang, J., Chen, L., Sha, M., Gao, J. and Xin, H. (2024) Blocking Lactate Regulation of the Grhl2/SLC31A1 Axis Inhibits Trophoblast Cuproptosis and Preeclampsia Development. Journal of Assisted Reproduction and Genetics, 41, 3201-3212.
https://doi.org/10.1007/s10815-024-03256-w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133