全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳减排机制下供应链决策的演化博弈分析
Evolutionary Game Analysis of Supply Chain Decision under Carbon Reduction Mechanism

DOI: 10.12677/mm.2025.154091, PP. 101-111

Keywords: 碳减排,供应链决策,Stackelberg博弈,演化博弈
Carbon Emission Reduction
, Supply Chain Decision, Stackelberg Game, Evolutionary Game

Full-Text   Cite this paper   Add to My Lib

Abstract:

面对全球气候变暖的挑战,碳减排成为各国政府和企业的重要议题。本文以制造商和零售商构成的二级供应链为背景,通过零售商主导的Stackelberg博弈模型,构建了制造商和零售商的博弈支付矩阵。利用演化博弈理论,探讨在碳减排机制下供应链中各参与方的决策演化过程。通过数值实验分析了对演化结果的影响因素。研究表明,在低碳生产与销售过程中,只有一个参与者(制造商或零售商)采用低碳行为,二者不同时采用低碳策略;零售商低碳订购水平与制造商低碳生产水平呈相反关系。零售商与制造商配合发展低碳经济,双方才能获利更大。
Faced with the challenge of global warming, carbon reduction has become an important issue for governments and enterprises. Based on the background of the two-level supply chain consisting of manufacturers and retailers, this paper constructs the game payment matrix of manufacturers and retailers through the Stackelberg game model. Using evolutionary game theory, the paper discusses the decision-making evolution process of each participant in the supply chain under the carbon emission reduction mechanism. The factors influencing the evolution results are analyzed by numerical experiments. Research shows that in the process of low-carbon production and sales, only one participant (manufacturer or retailer) adopts low-carbon behavior. The low carbon level of retailers is inversely related to that of manufacturers. Retailers and manufacturers will benefit more if they work together to develop a low-carbon economy.

References

[1]  Fan, W., Fang, Y. and Jiang, R. (2024) An Analysis of Optimal Equilibrium in the Carbon Trading Market—From a Tripartite Evolutionary Game Perspective. International Review of Financial Analysis, 96, Article 103629.
https://doi.org/10.1016/j.irfa.2024.103629
[2]  Zhang, G. and Bi, S. (2023) Inhibition or Promotion: The Impact of Carbon Emission Trading on Market Structure: Evidence from China. Frontiers in Energy Research, 11, Article 1238416.
https://doi.org/10.3389/fenrg.2023.1238416
[3]  于晓辉, 张志强, 于亚南. 考虑消费者偏好的绿色供应链补贴绩效研究[J]. 系统科学与数学, 2022, 42(4): 818-831.
[4]  Giri, B.C., Molla, M.U. and Biswas, P. (2022) Pythagorean Fuzzy DEMATEL Method for Supplier Selection in Sustainable Supply Chain Management. Expert Systems with Applications, 193, Article 116396.
https://doi.org/10.1016/j.eswa.2021.116396
[5]  Sun, H., Wan, Y., Zhang, L. and Zhou, Z. (2019) Evolutionary Game of the Green Investment in a Two-Echelon Supply Chain under a Government Subsidy Mechanism. Journal of Cleaner Production, 235, 1315-1326.
https://doi.org/10.1016/j.jclepro.2019.06.329
[6]  夏良杰, 白永万, 秦娟娟. 碳交易规制下信息不对称供应链的减排和低碳推广博弈研究[J]. 运筹与管理, 2018, 27(6): 37-45.
[7]  李新军, 陈美娜, 达庆利. 碳交易视角下政府管制的汽车制造企业闭环供应链优化决策[J]. 管理评论, 2020, 32(5): 269-279.
[8]  许海娟, 叶春明, 李芳. 政府规制下供应链企业碳减排演化博弈分析[J]. 软科学, 2025, 39(2): 107-114.
[9]  张丹露, 李峰, 梁樑, 等. 碳交易背景下考虑消费者动态绿色感知的碳减排决策研究[J/OL]. 中国管理科学: 1-23.
https://doi.org/10.16381/j.cnki.issn1003-207x.2023.0867, 2024-09-26.
[10]  徐春秋, 赵道致, 原白云, 等. 上下游联合减排与低碳宣传的微分博弈模型[J]. 管理科学学报, 2016, 19(2): 53-65.
[11]  周旻, 邓飞其. 供应链上演化博弈的复制动态及演化稳定策略[J]. 统计与决策, 2007, 23(7): 43-44.
[12]  王文利, 程天毓. 碳交易背景下供应链运营决策的演化博弈分析[J]. 系统工程理论与实践, 2021, 41(5): 1272-1281.
[13]  张金泉, 温素彬, 李慧. 低碳经济下供应链运营决策的演化博弈分析[J]. 运筹与管理, 2024, 33(5): 77-83.
[14]  Wang, Z., Jian, Z. and Ren, X. (2023) Pollution Prevention Strategies of SMEs in a Green Supply Chain Finance under External Government Intervention. Environmental Science and Pollution Research, 30, 45195-45208.
https://doi.org/10.1007/s11356-023-25444-4
[15]  Ghosh, D. and Shah, J. (2015) Supply Chain Analysis under Green Sensitive Consumer Demand and Cost Sharing Contract. International Journal of Production Economics, 164, 319-329.
https://doi.org/10.1016/j.ijpe.2014.11.005
[16]  Kang, K., Zhao, Y., Zhang, J. and Qiang, C. (2019) Evolutionary Game Theoretic Analysis on Low-Carbon Strategy for Supply Chain Enterprises. Journal of Cleaner Production, 230, 981-994.
https://doi.org/10.1016/j.jclepro.2019.05.118

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133