全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

6度边本原双本原图的分类
Classification of 6-Valent Edge-Primitive and Bi-Primitive Graphs

DOI: 10.12677/aam.2025.144151, PP. 187-191

Keywords: 6度图,双本原图,边本原
6-Valent Graph
, Bi-Primitive Graph, Edge-Primitive

Full-Text   Cite this paper   Add to My Lib

Abstract:

如果 Γ=( V,E ) 是一个6度连通的二部图,其中 V=UW ,令 GAutΓ ,若 G 中存在一个指数为2的正规子群 G + ,且 G + 在两个分部 U W 上作用是本原的,则我们称图 Γ G -双本原的。本文通过对6度边本原图的分类,确定了在非忠实的作用下,6度图中存在的双本原图只有 K 6,6 ,并进一步了解6度双本原图的结构和性质。
If Γ=( V,E ) is a 6-valent connected bipartite graph, where V=UW and GAutΓ , if here exists a normal subgroup G + of

References

[1]  Chao, C. (1971) On the Classification of Symmetric Graphs with a Prime Number of Vertices. Transactions of the American Mathematical Society, 158, 247-256.
https://doi.org/10.1090/s0002-9947-1971-0279000-7
[2]  Alspach, B. and Sutcliffe, R.J. (1979) Vertex‐Transitive Graphs of Order 2p. Annals of the New York Academy of Sciences, 319, 18-27.
https://doi.org/10.1111/j.1749-6632.1979.tb32769.x
[3]  Chao, C. (1971) On the Classification of Symmetric Graphs with a Prime Number of Vertices. Transactions of the American Mathematical Society, 158, 247.
https://doi.org/10.2307/1995785
[4]  Wang, R.J. and Xu, M.Y. (1993) A Classification of Symmetric Graphs of Order 3p. Journal of Combinatorial Theory, Series B, 58, 197-216.
https://doi.org/10.1006/jctb.1993.1037
[5]  Praeger, C.E., Wang, R.J. and Xu, M.Y. (1993) Symmetric Graphs of Order a Product of Two Distinct Primes. Journal of Combinatorial Theory, Series B, 58, 299-318.
https://doi.org/10.1006/jctb.1993.1046
[6]  Praeger, C.E. and Xu, M.Y. (1993) Vertex-Primitive Graphs of Order a Product of Two Distinct Primes. Journal of Combinatorial Theory, Series B, 59, 245-266.
https://doi.org/10.1006/jctb.1993.1068
[7]  Hua, X., Feng, Y. and Lee, J. (2011) Pentavalent Symmetric Graphs of Order 2pq. Discrete Mathematics, 311, 2259-2267.
https://doi.org/10.1016/j.disc.2011.07.007
[8]  Hua, X. and Chen, L. (2018) Valency Seven Symmetric Graphs of Order 2pq. Czechoslovak Mathematical Journal, 68, 581-599.
https://doi.org/10.21136/cmj.2018.0530-15
[9]  蓝婷, 凌波. 4p阶11度对称图[J]. 数学理论与应用, 2021, 41(2): 76.
[10]  Weiss, R.M. (1973) Kantenprimitive Graphen vom Grad drei. Journal of Combinatorial Theory, Series B, 15, 269-288.
https://doi.org/10.1016/0095-8956(73)90041-5
[11]  Giudici, M. and Li, C.H. (2010) On Finite Edge-Primitive and Edge-Quasiprimitive Graphs. Journal of Combinatorial Theory, Series B, 100, 275-298.
https://doi.org/10.1016/j.jctb.2009.09.001
[12]  Guo, S., Feng, Y. and Li, C.H. (2015) Edge-Primitive Tetravalent Graphs. Journal of Combinatorial Theory, Series B, 112, 124-137.
https://doi.org/10.1016/j.jctb.2014.12.004
[13]  Guo, S., Feng, Y. and Li, C.H. (2012) The Finite Edge-Primitive Pentavalent Graphs. Journal of Algebraic Combinatorics, 38, 491-497.
https://doi.org/10.1007/s10801-012-0412-y
[14]  Wu, C. and Pan, J. (2020) Finite Hexavalent Edge-Primitive Graphs. Applied Mathematics and Computation, 378, Article ID: 125207.
https://doi.org/10.1016/j.amc.2020.125207
[15]  Ivanov, A. and Iofinova, M.E. (1985) Bi-Primitive Cubic Graphs. In: Faradžev, I.A., Ivanov, A.A., Klin, M.H. and Woldar, A.J., Eds., Investigations in Algebraic Theory of Combinatorial Objects, Springer, 459-472.
[16]  Li, C.H. and Zhang, H. (2014) Finite Vertex-Biprimitive Edge-Transitive Tetravalent Graphs. Discrete Mathematics, 317, 33-43.
https://doi.org/10.1016/j.disc.2013.11.006
[17]  Cai, Q. and Lu, Z.P. (2024) Biprimitive Edge-Transitive Pentavalent Graphs. Discrete Mathematics, 347, Article ID: 113871.
https://doi.org/10.1016/j.disc.2024.113871
[18]  徐明曜. 有限群初步[M]. 北京: 科学出版社, 2014: 48-50.
[19]  徐明曜. 有限群导引(上) [M]. 北京: 科学出版社, 1999: 32-37.
[20]  Praeger, C.E. (1990) The Inclusion Problem for Finite Primitive Permutation Groups. Proceedings of the London Mathematical Society, 3, 68-88.
https://doi.org/10.1112/plms/s3-60.1.68
[21]  Wu, C. and Yin, F. (2024) A Complete Classification of Edge-Primitive Graphs of Valency 6. Discrete Mathematics, 347, Article ID: 114205.
https://doi.org/10.1016/j.disc.2024.114205

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133