|
基于形状记忆效应的锂硫电池微型驱动装置设计及其充放电性能研究
|
Abstract:
锂硫电池因具有高能量密度、对环境友好及成本效益高等优点,得到了众多科研人员的广泛关注,但多硫化物“穿梭效应”仍是阻碍锂硫电池商业化应用的主要难题。因此,本文利用形状记忆合金(SMA)和碳纳米管(CNT)设计一种仿生智能微型装置来捕获多硫化物,微型驱动装置能感知温度的变化自动改变其形状,从而带动碳纳米管捕获多硫化物。放置微型驱动装置的锂硫电池50次充放电循环以后的放电比容量达到了2150 mAh·g-1,远大于未放置微型驱动装置的锂硫电池放电比容量1678 mAh·g-1,显示出较高的比容量及较好的循环稳定性。本文设计搭建的仿生智能微型裝置将为锂硫电池商业化应用提供很好的理论借鉴。
Lithium-sulfur batteries have drawn numerous attentions by many researchers, because of their high energy density, environmental friendliness and high-cost effectiveness. However, the “shuttle effect” of polysulfide is still the main difficulty that hinders the commercial application of lithium- sulfur batteries. Herein, to capture polysulfide, shape memory alloy (SMA) and carbon nanotubes (CNTs) are adopted to design a bionic intelligent micro-device. Sensing temperature deviation, the bionic micro-device automatically changes its shape, which drives CNTs to capture polysulfides. When the micro-driving devices is used in Li-S battery, a high specific discharge capacity of 2150 mAh·g?1 is achieved after 50th charge-discharge cycles, which much higher than the discharge capacity (1678 mAh·g?1) of Li-S battery without micro-driving devices, demonstrating high specific capacity and good cyclic stability. The bionic intelligent micro-device designed and constructed in this paper will provide some new ideas for the commercial application of lithium-sulfur batteries.
[1] | Zhou, G., Zhao, Y., Zu, C. and Manthiram, A. (2015) Free-Standing TiO2 Nanowire-Embedded Graphene Hybrid Membrane for Advanced Li/Dissolved Polysulfide Batteries. Nano Energy, 12, 240-249. https://doi.org/10.1016/j.nanoen.2014.12.029 |
[2] | Dai, C., Lim, J., Wang, M., Hu, L., Chen, Y., Chen, Z., et al. (2018) Honeycomb‐Like Spherical Cathode Host Constructed from Hollow Metallic and Polar Co9S8 Tubules for Advanced Lithium-Sulfur Batteries. Advanced Functional Materials, 28, Article ID: 1704443. https://doi.org/10.1002/adfm.201704443 |
[3] | 康卫民, 马晓敏, 赵义侠, 等. 锂硫电池隔膜材料的研究进展[J]. 高分子学报, 2015(11): 1258-1265. |
[4] | Su, Y. and Manthiram, A. (2012) Lithium-Sulphur Batteries with a Microporous Carbon Paper as a Bifunctional Interlayer. Nature Communications, 3, Article No. 1166. https://doi.org/10.1038/ncomms2163 |
[5] | Li, Q., Liu, M., Qin, X., Wu, J., Han, W., Liang, G., et al. (2016) Cyclized-Polyacrylonitrile Modified Carbon Nanofiber Interlayers Enabling Strong Trapping of Polysulfides in Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 4, 12973-12980. https://doi.org/10.1039/c6ta03918a |
[6] | Niu, S., Lv, W., Zhou, G., Shi, H., Qin, X., Zheng, C., et al. (2016) Electrostatic-Spraying an Ultrathin, Multifunctional and Compact Coating onto a Cathode for a Long-Life and High-Rate Lithium-Sulfur Battery. Nano Energy, 30, 138-145. https://doi.org/10.1016/j.nanoen.2016.09.044 |
[7] | Zhou, J., Holekevi Chandrappa, M.L., Tan, S., Wang, S., Wu, C., Nguyen, H., et al. (2024) Healable and Conductive Sulfur Iodide for Solid-State Li-S Batteries. Nature, 627, 301-305. https://doi.org/10.1038/s41586-024-07101-z |
[8] | Jin, W., Zhang, X., Liu, M., Zhao, Y. and Zhang, P. (2024) High-Performance Li-S Batteries Boosted by Redox Mediators: A Review and Prospects. Energy Storage Materials, 67, Article ID: 103223. https://doi.org/10.1016/j.ensm.2024.103223 |
[9] | Yang, H., D’Ambrosio, N., Liu, P., Pasini, D. and Ma, L. (2023) Shape Memory Mechanical Metamaterials. Materials Today, 66, 36-49. https://doi.org/10.1016/j.mattod.2023.04.003 |
[10] | Zhou, S., Zhou, D., Gu, R., Ma, C., Yu, C. and Qu, D. (2024) Mechanically Interlocked [c2]daisy Chain Backbone Enabling Advanced Shape-Memory Polymeric Materials. Nature Communications, 15, Article No. 1690. https://doi.org/10.1038/s41467-024-45980-y |
[11] | 成慧, 薛超, 刘渝. 探索形状记忆合金在开关元件领域中的应用[J]. 中国标准化, 2019(S1): 194-198. |
[12] | 袁发鹏, 黄金. 形状记忆合金温控开关驱动特性分析及试验[J]. 现代制造工程, 2018(3): 23-27, 52. |
[13] | Qiu, D., Zhang, X., Zheng, D., Ji, W., Ding, T., Qu, H., et al. (2023) High-Performance Li-S Batteries with a Minimum Shuttle Effect: Disproportionation of Dissolved Polysulfide to Elemental Sulfur Catalyzed by a Bifunctional Carbon Host. ACS Applied Materials & Interfaces, 15, 36250-36261. https://doi.org/10.1021/acsami.3c06459 |
[14] | Jin, Q., Zhao, K., Wu, L., Li, L., Kong, L. and Zhang, X. (2023) Enhancing Li Cycling Coulombic Efficiency While Mitigating “Shuttle Effect” of Li-S Battery through Sustained Release of Lino3. Journal of Energy Chemistry, 84, 22-29. https://doi.org/10.1016/j.jechem.2023.05.020 |
[15] | Wang, T., Dong, Q., Li, C. and Wei, Z. (2024) Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 40, Article ID: 2303061. https://doi.org/10.3866/pku.whxb202303061 |
[16] | Chai, L., Wang, J., Wang, H., Zhang, L., Yu, W. and Mai, L. (2015) Porous Carbonized Graphene-Embedded Fungus Film as an Interlayer for Superior Li-S Batteries. Nano Energy, 17, 224-232. https://doi.org/10.1016/j.nanoen.2015.09.001 |