全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

媒介心理学研究中的数字痕迹收集技术
Digital Trace Collection Techniques in Media Psychology Research

DOI: 10.12677/ap.2025.154175, PP. 1-8

Keywords: 媒介心理学,数字痕迹,API,数据捐赠,屏幕追踪
Media Psychology
, Data Traces, API, Data Donation, Screen Tracking

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着数字媒介的普及,人们的日常生活日益“媒介化”,媒介使用对个体心理的影响成为研究热点。然而,传统研究方法依赖自我报告,主观性强,难以捕捉复杂的数字体验。本文探讨数字痕迹收集技术在媒介心理学研究中的应用,分析其优势与局限性。数字痕迹,即用户使用数字媒介时留下的活动记录,为客观评估个体数字体验提供新视角。本文介绍了三种主要的数字痕迹收集技术:API、数据捐赠和屏幕追踪,并分析了其在获取用户内容消费、使用动机、时间尺度和情境信息方面的具体应用。然而,该技术也存在局限性,例如难以应用于专业化设备、无法全面呈现现实生活细节,以及受限于被试群体的数字素养。未来研究应关注开发更高效的数据采集和分析技术、构建多模态数据整合框架,并探索数字健康干预系统的设计。
As digital media becomes ubiquitous, people’s daily lives are increasingly “mediatized”, making the psychological impact of media usage a focal research topic. However, traditional research methods relying on self-reports exhibit strong subjectivity and struggle to capture complex digital experiences. This paper examines the application of digital trace collection technologies in media psychology research, analyzing their advantages and limitations. Digital traces—activity records left by users during digital media interactions—provide new perspectives for objectively assessing individual digital experiences. The study introduces three primary digital trace collection techniques: API integration, data donation, and screen tracking, analyzing their specific applications in capturing user content consumption patterns, usage motivations, temporal scales, and contextual information. Nevertheless, limitations persist, including challenges in applying these methods to specialized devices, incomplete representation of real-life details, and constraints imposed by participants’ digital literacy levels. Future research should focus on developing more efficient data collection/analysis techniques, constructing multimodal data integration frameworks, and exploring designs for digital health intervention systems.

References

[1]  中国互联网络信息中心(2025). 55次中国互联网络发展状况统计报告.
https://www.cnnic.net.cn/
[2]  Andersen, K., H. de Vreese, C., & Albæk, E. (2016). Measuring Media Diet in a High-Choice Environment—Testing the List-Frequency Technique. Communication Methods and Measures, 10, 81-98.
https://doi.org/10.1080/19312458.2016.1150973
[3]  Anderson, C. A., Shibuya, A., Ihori, N., Swing, E. L., Bushman, B. J., Sakamoto, A. et al. (2010). Violent Video Game Effects on Aggression, Empathy, and Prosocial Behavior in Eastern and Western Countries: A Meta-Analytic Review. Psychological Bulletin, 136, 151-173.
https://doi.org/10.1037/a0018251
[4]  Baechler, G., Sunkara, S., Wang, M., Zubach, F., Mansoor, H., Etter, V. et al. (2024). ScreenAI: A Vision-Language Model for UI and Infographics Understanding. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (pp. 3058-3068). International Joint Conferences on Artificial Intelligence Organization.
https://doi.org/10.24963/ijcai.2024/339
[5]  Brinberg, M., Ram, N., Yang, X., Cho, M., Sundar, S. S., Robinson, T. N. et al. (2021a). The Idiosyncrasies of Everyday Digital Lives: Using the Human Screenome Project to Study User Behavior on Smartphones. Computers in Human Behavior, 114, Article ID: 106570.
https://doi.org/10.1016/j.chb.2020.106570
[6]  Brinberg, M., Vanderbilt, R. R., Solomon, D. H., Brinberg, D., & Ram, N. (2021b). Using Technology to Unobtrusively Observe Relationship Development. Journal of Social and Personal Relationships, 38, 3429-3450.
https://doi.org/10.1177/02654075211028654
[7]  Brown, L., & Kuss, D. J. (2020). Fear of Missing Out, Mental Wellbeing, and Social Connectedness: A Seven-Day Social Media Abstinence Trial. International Journal of Environmental Research and Public Health, 17, Article 4566.
https://doi.org/10.3390/ijerph17124566
[8]  Cho, M., Reeves, B., Ram, N., & Robinson, T. N. (2023). Balancing Media Selections over Time: Emotional Valence, Informational Content, and Time Intervals of Use. Heliyon, 9, e22816.
https://doi.org/10.1016/j.heliyon.2023.e22816
[9]  Cutting, J. E., Brunick, K. L., & Candan, A. (2012). Perceiving Event Dynamics and Parsing Hollywood Films. Journal of Experimental Psychology: Human Perception and Performance, 38, 1476-1490.
https://doi.org/10.1037/a0027737
[10]  Davidson, B. I., Wischerath, D., Racek, D., Parry, D. A., Godwin, E., Hinds, J. et al. (2023). Platform-Controlled Social Media Apis Threaten Open Science. Nature Human Behaviour, 7, 2054-2057.
https://doi.org/10.1038/s41562-023-01750-2
[11]  Fisch, S. M. (2000). A Capacity Model of Children's Comprehension of Educational Content on Television. Media Psychology, 2, 63-91.
https://doi.org/10.1207/s1532785xmep0201_4
[12]  Gentile, D. A., Li, D., Khoo, A., Prot, S., & Anderson, C. A. (2014). Mediators and Moderators of Long-Term Effects of Violent Video Games on Aggressive Behavior. JAMA Pediatrics, 168, 450-457.
https://doi.org/10.1001/jamapediatrics.2014.63
[13]  Greenwood, D. N., & Long, C. R. (2009). Mood Specific Media Use and Emotion Regulation: Patterns and Individual Differences. Personality and Individual Differences, 46, 616-621.
https://doi.org/10.1016/j.paid.2009.01.002
[14]  Hermans, D., De Houwer, J., & Eelen, P. (2001). A Time Course Analysis of the Affective Priming Effect. Cognition & Emotion, 15, 143-165.
https://doi.org/10.1080/02699930125768
[15]  Lundby, K. (2014). Mediatization of Communication. De Gruyter Mouton.
https://doi.org/10.1515/9783110272215
[16]  Murphy, J., Hofacker, C., & Mizerski, R. (2006). Primacy and Recency Effects on Clicking Behavior. Journal of Computer-Mediated Communication, 11, 522-535.
https://doi.org/10.1111/j.1083-6101.2006.00025.x
[17]  Murphy, S. C. (2017). A Hands-On Guide to Conducting Psychological Research on Twitter. Social Psychological and Personality Science, 8, 396-412.
[18]  Ohme, J., Araujo, T., Boeschoten, L., Freelon, D., Ram, N., Reeves, B. B. et al. (2024). Digital Trace Data Collection for Social Media Effects Research: Apis, Data Donation, and (Screen) Tracking. Communication Methods and Measures, 18, 124-141.
https://doi.org/10.1080/19312458.2023.2181319
[19]  Parry, D. A., Davidson, B. I., Sewall, C. J. R., Fisher, J. T., Mieczkowski, H., & Quintana, D. S. (2021). A Systematic Review and Meta-Analysis of Discrepancies between Logged and Self-Reported Digital Media Use. Nature Human Behaviour, 5, 1535-1547.
https://doi.org/10.1038/s41562-021-01117-5
[20]  Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, Emotional, and Behavioral Correlates of Fear of Missing Out. Computers in Human Behavior, 29, 1841-1848.
https://doi.org/10.1016/j.chb.2013.02.014
[21]  Rafaeli, A., Ashtar, S., & Altman, D. (2019). Digital Traces: New Data, Resources, and Tools for Psychological-Science Research. Current Directions in Psychological Science, 28, 560-566.
https://doi.org/10.1177/0963721419861410
[22]  Rauthmann, J. F., & Sherman, R. A. (2016). Ultra-brief Measures for the Situational Eight DIAMONDS Domains. European Journal of Psychological Assessment, 32, 165-174.
https://doi.org/10.1027/1015-5759/a000245
[23]  Reeves, B., Ram, N., Robinson, T. N., Cummings, J. J., Giles, C. L., Pan, J. et al. (2021). Screenomics: A Framework to Capture and Analyze Personal Life Experiences and the Ways That Technology Shapes Them. Human-Computer Interaction, 36, 150-201.
https://doi.org/10.1080/07370024.2019.1578652
[24]  Reeves, B., Robinson, T., & Ram, N. (2020). Time for the Human Screenome Project. Nature, 577, 314-317.
https://doi.org/10.1038/d41586-020-00032-5
[25]  Research GfK (2017). Millennials Account for Nearly Half of US “Cordless” Population.
http://www.gfk.com/en-us/insights/press-release/millennials-account-for-nearly-half-of-us-cordless-population-gfk-mri/
[26]  Samra, A., Warburton, W. A., & Collins, A. M. (2022). Social Comparisons: A Potential Mechanism Linking Problematic Social Media Use with Depression. Journal of Behavioral Addictions, 11, 607-614.
https://doi.org/10.1556/2006.2022.00023
[27]  Seo, M., Goldfarb, B., & Barrett, L. F. (2010). Affect and the Framing Effect within Individuals over Time: Risk Taking in a Dynamic Investment Simulation. Academy of Management Journal, 53, 411-431.
https://doi.org/10.5465/amj.2010.49389383
[28]  Sundar, S. S., & Limperos, A. M. (2013). Uses and Grats 2.0: New Gratifications for New Media. Journal of Broadcasting & Electronic Media, 57, 504-525.
https://doi.org/10.1080/08838151.2013.845827
[29]  Sundar, S. S., Kalyanaraman, S., & Brown, J. (2003). Explicating Web Site Interactivity: Impression Formation Effects in Political Campaign Sites. Communication Research, 30, 30-59.
https://doi.org/10.1177/0093650202239025
[30]  Syvertsen, T., & Enli, G. (2020). Digital Detox: Media Resistance and the Promise of Authenticity. Convergence: The International Journal of Research into New Media Technologies, 26, 1269-1283.
https://doi.org/10.1177/1354856519847325
[31]  Valkenburg, P., Beyens, I., Pouwels, J. L., van Driel, I. I., & Keijsers, L. (2021). Social Media Use and Adolescents’ Self-Esteem: Heading for a Person-Specific Media Effects Paradigm. Journal of Communication, 71, 56-78.
https://doi.org/10.1093/joc/jqaa039
[32]  Volkow, N. D., Koob, G. F., & McLellan, A. T. (2016). Neurobiologic Advances from the Brain Disease Model of Addiction. New England Journal of Medicine, 374, 363-371.
https://doi.org/10.1056/nejmra1511480
[33]  Wagner, C., Strohmaier, M., Olteanu, A., Kıcıman, E., Contractor, N., & Eliassi-Rad, T. (2021). Measuring Algorithmically Infused Societies. Nature, 595, 197-204.
https://doi.org/10.1038/s41586-021-03666-1
[34]  Wang, B., Li, G., Zhou, X., Chen, Z., Grossman, T., & Li, Y. (2021). Screen2words: Automatic Mobile UI Summarization with Multimodal Learning. In The 34th Annual ACM Symposium on User Interface Software and Technology (pp. 498-510). ACM.
https://doi.org/10.1145/3472749.3474765
[35]  Wang, J., Fan, Y., Palacios, J., Chai, Y., Guetta-Jeanrenaud, N., Obradovich, N. et al. (2022). Global Evidence of Expressed Sentiment Alterations during the COVID-19 Pandemic. Nature Human Behaviour, 6, 349-358.
https://doi.org/10.1038/s41562-022-01312-y
[36]  Yee, A. Z. H., Yu, R., Lim, S. S., Lim, K. H., Dinh, T. T. A., Loh, L. et al. (2023). Screenlife Capture: An Open-Source and User-Friendly Framework for Collecting Screenomes from Android Smartphones. Behavior Research Methods, 55, 4068-4085.
https://doi.org/10.3758/s13428-022-02006-z
[37]  Yeykelis, L., Cummings, J. J., & Reeves, B. (2014). Multitasking on a Single Device: Arousal and the Frequency, Anticipation, and Prediction of Switching between Media Content on a Computer. Journal of Communication, 64, 167-192.
https://doi.org/10.1111/jcom.12070

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133