全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

社交媒体文本的价值测度——基于深度学习的网络消费舆情指数构建及其作用研究
Value Measurement of Social Media Texts—Research on the Construction and Function of Online Consumer Public Opinion Index Based on Deep Learning

DOI: 10.12677/ecl.2025.143849, PP. 1505-1518

Keywords: 舆情挖掘,网络消费舆情指数,Bert,小波变换,LSTM
Public Opinion Mining
, Online Consumer Public Opinion Index, Bert, Wavelet Transform, LSTM

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着互联网和社交媒体的快速普及,社交媒体文本因其实时性、互动性和无偏性而受到关注。挖掘量化社媒消费舆情,并进一步研究其对消费者信心的影响成为有意义的探索。文章首先构建了6个不同主题维度的消费热点关键词库,爬取了社交平台约178.2万相关热门微博。进一步地,基于Bert预训练模型挖掘情感倾向,并引入微博热度得分和小波变换,创建了一个用来测度消费舆情的网络消费舆情指数。研究发现,网络消费舆情指数对消费者信心具有显著正向影响且两者存在长期稳定的均衡关系;进一步将其加入消费者信心预测模型,所有评价指标均得到显著提升,且LSTM在不同预测期限内的预测效果和鲁棒性都优于GRU和Random Forest。
With the rapid popularization of the Internet and social media, social media texts have attracted attention because of their real-time, interactive and unbiased nature. It has become a meaningful exploration to explore the quantitative public opinion of social media consumption and further study its impact on consumer confidence. The paper first constructed a consumer keyword database with 6 different topic dimensions, and crawled about 1.782 million related popular microblogs on the social platform. Further, based on Bert pre-training model, emotional tendency is mined, and an online Consumer Confidence Index is created to comprehensively quantify consumer confidence by introducing Weibo heat score and wavelet transform. It is found that the online CPOI has a significant positive impact on consumer confidence and there is a long-term stable equilibrium relationship between the two. When it is further added into the consumer confidence forecasting model, all evaluation indicators are significantly improved, and the forecasting effect and robustness of LSTM are better than that of GRU and Random Forest in different forecasting periods.

References

[1]  Gelper, S., Lemmens, A. and Croux, C. (2007) Consumer Sentiment and Consumer Spending: Decomposing the Granger Causal Relationship in the Time Domain. Applied Economics, 39, 1-11.
https://doi.org/10.1080/00036840500427791
[2]  Barsky, R.B. and Sims, E.R. (2012) Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence. American Economic Review, 102, 1343-1377.
https://doi.org/10.1257/aer.102.4.1343
[3]  Deng, S., Sinha, A.P. and Zhao, H. (2017) Adapting Sentiment Lexicons to Domain-Specific Social Media Texts. Decision Support Systems, 94, 65-76.
https://doi.org/10.1016/j.dss.2016.11.001
[4]  Yiu, D.W., Wan, W.P., Chen, K.X. and Tian, X. (2021) Public Sentiment Is Everything: Host-Country Public Sentiment toward Home Country and Acquisition Ownership during Institutional Transition. Journal of International Business Studies, 53, 1202-1227.
https://doi.org/10.1057/s41267-020-00380-4
[5]  Statista (2024) Number of Social Network Users Worldwide from 2017 to 2028 (in Billions).
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
[6]  Conrad, F.G., Gagnon-Bartsch, J.A., Ferg, R.A., Schober, M.F., Pasek, J. and Hou, E. (2019) Social Media as an Alternative to Surveys of Opinions about the Economy. Social Science Computer Review, 39, 489-508.
https://doi.org/10.1177/0894439319875692
[7]  Shiller, R.J. (2020) Narrative Economics: How Stories Go Viral and Drive Major Economic Events. Princeton University Press.
https://doi.org/10.1515/9780691212074
[8]  Jelodar, H., Wang, Y., Orji, R. and Huang, S. (2020) Deep Sentiment Classification and Topic Discovery on Novel Coronavirus or COVID-19 Online Discussions: NLP Using LSTM Recurrent Neural Network Approach. IEEE Journal of Biomedical and Health Informatics, 24, 2733-2742.
https://doi.org/10.1109/jbhi.2020.3001216
[9]  Olabanjo, O., Wusu, A., Afisi, O., Asokere, M., Padonu, R., Olabanjo, O., et al. (2023) From Twitter to Aso-Rock: A Sentiment Analysis Framework for Understanding Nigeria 2023 Presidential Election. Heliyon, 9, e16085.
https://doi.org/10.1016/j.heliyon.2023.e16085
[10]  Devlin, J., et al. (2018) BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding.
[11]  王建成, 徐扬, 刘启元, 等. 基于神经主题模型的对话情感分析[J]. 中文信息学报, 2020, 34(1): 106-112.
[12]  綦方中, 田宇阳. 基于BERT和LDA模型的酒店评论文本挖掘[J]. 计算机应用与软件, 2023, 40(7): 71-76+90.
[13]  Hartmann, J., Heitmann, M., Siebert, C. and Schamp, C. (2023) More than a Feeling: Accuracy and Application of Sentiment Analysis. International Journal of Research in Marketing, 40, 75-87.
https://doi.org/10.1016/j.ijresmar.2022.05.005
[14]  Gan, B., Alexeev, V., Bird, R. and Yeung, D. (2020) Sensitivity to Sentiment: News vs Social Media. International Review of Financial Analysis, 67, Article ID: 101390.
https://doi.org/10.1016/j.irfa.2019.101390
[15]  Mao, H., Counts, S. and Bollen, J. (2015) Quantifying the Effects of Online Bullishness on International Financial Markets. ECB Statistics Paper, 9.
[16]  崔炎炎, 刘立新. 网络舆情赋能金融科技股票收盘价预测研究[J]. 统计研究, 2022, 39(6): 148-160.
[17]  Angelico, C., Marcucci, J., Miccoli, M. and Quarta, F. (2022) Can We Measure Inflation Expectations Using Twitter? Journal of Econometrics, 228, 259-277.
https://doi.org/10.1016/j.jeconom.2021.12.008
[18]  Mueller, E. (1957) Effects of Consumer Attitudes on Purchases. The American Economic Review, 47, 946-965.
[19]  Linden, F. (1982) The Consumer as Forecaster. Public Opinion Quarterly, 46, 353-360.
https://doi.org/10.1086/268732
[20]  Bram, J. and Ludvigson, S.C. (1998) Does Consumer Confidence Forecast Household Expenditure? A Sentiment Index Horse Race. Economic Policy Review, 4, 59-78.
[21]  Zumbrun, J. (2017) A New Index Tracks Our National Mood One Tweet at a Time. The Wall Street Journal.
https://blogs.wsj.com/economics/2017/05/08/a-new-index-tracks-our-national-mood-one-tweet-at-a-time/
[22]  Lehrer, S., Xie, T. and Zeng, T. (2019) Does High-Frequency Social Media Data Improve Forecasts of Low-Frequency Consumer Confidence Measures? Journal of Financial Econometrics, 19, 910-933.
https://doi.org/10.1093/jjfinec/nbz037
[23]  Qiu, Y. (2020) Forecasting the Consumer Confidence Index with Tree-Based MIDAS Regressions. Economic Modelling, 91, 247-256.
https://doi.org/10.1016/j.econmod.2020.06.003
[24]  张一帆, 林建浩, 樊嘉诚. 新闻文本大数据与消费增速实时预测——基于叙事经济学的视角[J]. 金融研究, 2023(5): 152-169.
[25]  Zhang, Z., Keasey, K., Lambrinoudakis, C. and Mascia, D.V. (2024) Consumer Sentiment: The Influence of Social Media. Economics Letters, 237, Article ID: 111638.
https://doi.org/10.1016/j.econlet.2024.111638
[26]  Armantier, O., et al. (2017) An Overview of the Survey of Consumer Expectations. Economic Policy Review, 23, 51-72.
[27]  Curtin, R.T. (1982) Indicators of Consumer Behavior: The University of Michigan Surveys of Consumers. Public Opinion Quarterly, 46, 340-352.
https://doi.org/10.1086/268731
[28]  郭洪伟. 我国消费者信心指数编制及存在的问题[J]. 商业时代, 2010(33): 28-29.
[29]  郭洪伟. 基于网络大数据的消费者信心指数编制[J]. 统计与信息论坛, 2015, 30(6): 111-112.
[30]  Vaswani, A., et al. (2017) Attention Is All You Need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 6000-6010.
[31]  Hochreiter, S. (1997) Long Short-Term Memory. Neural Computation. MIT Press.
[32]  孙景, 朱建霖, 李挽澜, 等. 基于互联网数据的消费者信心指数滚动预测研究[J]. 西安交通大学学报(社会科学版), 2021, 41(6): 68-77.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133