全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

气候政策不确定性与大宗商品市场的风险溢出研究
The Study of Climate Policy Uncertainty and Risk Spillover in Commodity Markets

DOI: 10.12677/ecl.2025.143844, PP. 1457-1475

Keywords: 气候政策不确定性,中国大宗商品市场,时域,频域,复杂网络
Climate Policy Uncertainty
, Chinese Commodity Markets, Time Domain, Frequency Domain, Complex Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究以DY和BK溢出指数模型为基础,探讨了气候政策不确定性对中国大宗商品市场的风险溢出效应。通过构建时变波动溢出指数,捕捉了这一效应的动态时变特征,并建立了风险溢出网络模型,揭示了不同市场之间的风险传播路径。研究发现,气候政策不确定性对中国大宗商品市场存在显著的风险溢出效应,尤其受到高频和中频频域的影响。不同市场表现出明显的异质性,工业品市场主要作为波动溢出的传递者,而农产品市场则更倾向于成为波动溢出的接收者。此外,气候政策不确定性对于风险溢出效应的影响在不同频域 存在差异,较少受低频频域的影响。综合而言,本研究通过全面的实证检验,为政策制定者提供了深入了解气候政策调整对大宗商品市场风险传播的影响,特别是在不同频域和市场异质性方面。这一视角为制定应对策略和保障市场稳定性提供了有益的参考。
Based on the DY and BK spillover index models, this study explores the risk spillover effects of climate policy uncertainty on China’s commodity markets. By constructing a time-varying volatility spillover index to capture the dynamic and time-varying characteristics of these effects, and establishing a risk spillover network model, the study reveals the pathways of risk transmission among different markets. The findings indicate a significant risk spillover effect of climate policy uncertainty on China’s commodity markets, particularly influenced by high and medium-frequency domains. Different markets exhibit notable heterogeneity, with the industrial market primarily acting as a transmitter of volatility spillover, while the agricultural market tends to be a receiver. Additionally, the impact of climate policy uncertainty on risk spillover effects varies across different frequency domains, with a relatively minor influence from the low-frequency domain. Overall, this study, through comprehensive empirical testing, provides valuable insights for policymakers to gain a deeper understanding of the impact of climate policy adjustments on risk transmission in commodity markets, especially considering different frequency domains and market heterogeneity. Such insights serve as a useful reference for formulating strategies to address these challenges and ensure market stability.

References

[1]  Botzen, W., Duijndam, S. and van Beukering, P. (2021) Lessons for Climate Policy from Behavioral Biases towards COVID-19 and Climate Change Risks. World Development, 137, Article ID: 105214.
https://doi.org/10.1016/j.worlddev.2020.105214

[2]  Tian, L. and Li, X. (2023) Does Climate Policy Uncertainty Affect Carbon Emissions in China? A Novel Dynamic ARDL Simulation Perspective. Humanities and Social Sciences Communications, 10, Article No. 689.
https://doi.org/10.1057/s41599-023-02102-1

[3]  Khan, Y., Hassan, T., Kirikkaleli, D., Xiuqin, Z. and Shukai, C. (2021) The Impact of Economic Policy Uncertainty on Carbon Emissions: Evaluating the Role of Foreign Capital Investment and Renewable Energy in East Asian Economies. Environmental Science and Pollution Research, 29, 18527-18545.
https://doi.org/10.1007/s11356-021-17000-9

[4]  Ye, L. (2022) The Effect of Climate News Risk on Uncertainties. Technological Forecasting and Social Change, 178, Article ID: 121586.
https://doi.org/10.1016/j.techfore.2022.121586

[5]  Gavriilidis, K. (2021) Measuring Climate Policy Uncertainty. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.3847388

[6]  Rao, A., Lucey, B. and Kumar, S. (2023) Climate Risk and Carbon Emissions: Examining Their Impact on Key Energy Markets through Asymmetric Spillovers. Energy Economics, 126, Article ID: 106970.
https://doi.org/10.1016/j.eneco.2023.106970

[7]  Li, Z.Z., Su, C., Moldovan, N. and Umar, M. (2023) Energy Consumption within Policy Uncertainty: Considering the Climate and Economic Factors. Renewable Energy, 208, 567-576.
https://doi.org/10.1016/j.renene.2023.03.098

[8]  Liu, X., Wojewodzki, M., Cai, Y. and Sharma, S. (2023) The Dynamic Relationships between Carbon Prices and Policy Uncertainties. Technological Forecasting and Social Change, 188, Article ID: 122325.
https://doi.org/10.1016/j.techfore.2023.122325

[9]  Wang, K., Kan, J., Qiu, L. and Xu, S. (2023) Climate Policy Uncertainty, Oil Price and Agricultural Commodity: From Quantile and Time Perspective. Economic Analysis and Policy, 78, 256-272.
https://doi.org/10.1016/j.eap.2023.03.013

[10]  Dai, Z. and Zhang, X. (2023) Climate Policy Uncertainty and Risks Taken by the Bank: Evidence from China. International Review of Financial Analysis, 87, Article ID: 102579.
https://doi.org/10.1016/j.irfa.2023.102579

[11]  Ren, X., Zhang, X., Yan, C., et al. (2022) Climate Policy Uncertainty and Firm-Level Total Factor Productivity: Evidence from China. Energy Economics, 113, Article ID: 106209.
[12]  Xu, X., Huang, S., Lucey, B.M. and An, H. (2023) The Impacts of Climate Policy Uncertainty on Stock Markets: Comparison between China and the US. International Review of Financial Analysis, 88, Article ID: 102671.
https://doi.org/10.1016/j.irfa.2023.102671

[13]  谭小芬, 张峻晓, 郑辛如. 国际大宗商品市场与金融市场的双向溢出效应——基于BEKK-GARCH模型和溢出指数法的实证研究[J]. 中国软科学, 2018(8): 31-48.
[14]  胡雁冰, 吴腾华. 国际大宗商品价格波动对中国金融市场风险的影响——基于溢出指数法的实证研究[J]. 价格月刊, 2022(11): 11-18.
[15]  隋建利, 杨庆伟. 国际大宗商品市场与中国金融市场间风险的传染测度与来源追溯[J]. 财经研究, 2021, 47(8): 139-154.
[16]  郭文伟, 罗胜涛. 地缘政治风险、能源价格波动与全球通货膨胀[J]. 金融与经济, 2023(4): 40-52.
[17]  黄恒, 齐保垒, 孙国茂. 政策漂移、大宗商品价格波动与通货膨胀[J]. 统计与决策, 2023, 39(6): 131-136.
[18]  Agnello, L., Castro, V., Hammoudeh, S. and Sousa, R.M. (2020) Global Factors, Uncertainty, Weather Conditions and Energy Prices: On the Drivers of the Duration of Commodity Price Cycle Phases. Energy Economics, 90, Article ID: 104862.
https://doi.org/10.1016/j.eneco.2020.104862

[19]  Nam, K. (2021) Investigating the Effect of Climate Uncertainty on Global Commodity Markets. Energy Economics, 96, Article ID: 105123.
https://doi.org/10.1016/j.eneco.2021.105123

[20]  Ronn, E.I. (2022) Commodity Market Indicators of a 2023 Texas Winter Freeze. Journal of Commodity Markets, 27, Article ID: 100269.
https://doi.org/10.1016/j.jcomm.2022.100269

[21]  Makkonen, A., Vallström, D., Uddin, G.S., Rahman, M.L. and Haddad, M.F.C. (2021) The Effect of Temperature Anomaly and Macroeconomic Fundamentals on Agricultural Commodity Futures Returns. Energy Economics, 100, Article ID: 105377.
https://doi.org/10.1016/j.eneco.2021.105377

[22]  Shen, Y., Sun, X., Ji, Q. and Zhang, D. (2023) Climate Events Matter in the Global Natural Gas Market. Energy Economics, 125, Article ID: 106887.
https://doi.org/10.1016/j.eneco.2023.106887

[23]  Batten, J.A., Maddox, G.E. and Young, M.R. (2021) Does Weather, or Energy Prices, Affect Carbon Prices? Energy Economics, 96, Article ID: 105016.
https://doi.org/10.1016/j.eneco.2020.105016

[24]  Wu, D., Dai, X., Zhao, R., Cao, Y. and Wang, Q. (2023) Pass-Through from Temperature Intervals to China’s Commodity Futures’ Interval-Valued Returns: Evidence from the Varying-Coefficient ITS Model. Finance Research Letters, 58, Article ID: 104289.
https://doi.org/10.1016/j.frl.2023.104289

[25]  Yu, L., Li, J. and Tang, L. (2015) Dynamic Volatility Spillover Effect Analysis between Carbon Market and Crude Oil Market: A DCC-ICSS Approach. International Journal of Global Energy Issues, 38, Article No. 242.
https://doi.org/10.1504/ijgei.2015.070265

[26]  郭文伟. 国内外大宗商品价格泡沫传染机制研究[J]. 中央财经大学学报, 2022(4): 37-49.
[27]  杨立生, 杨杰. 国际大宗商品价格波动对中国金融市场的风险溢出效应——波动溢出网络视角[J]. 金融监管研究, 2022(8): 58-77.
[28]  Zhao, Y., Dai, X., Zhang, D., Wang, Q. and Cao, Y. (2023) Do Weather Conditions Drive China’s Carbon-Coal-Electricity Markets Systemic Risk? a Multi-Timescale Analysis. Finance Research Letters, 51, Article ID: 103432.
https://doi.org/10.1016/j.frl.2022.103432

[29]  Zhang, D., Dai, X., Wang, Q. and Lau, C.K.M. (2023) Impacts of Weather Conditions on the US Commodity Markets Systemic Interdependence across Multi-Timescales. Energy Economics, 123, Article ID: 106732.
https://doi.org/10.1016/j.eneco.2023.106732

[30]  郭娜, 王珮瑶, 解娜琳, 等. 国际大宗商品市场对中国金融市场的风险溢出效应研究——基于冲击规模和好坏波动的非对称性分析[J]. 南方经济, 2024(1): 91-106.
[31]  王智茂, 杨森. 国际原油价格与我国商品期货价格的波动溢出效应——基于TVP-FAVAR-DY模型的实证研究[J]. 广西社会科学, 2023(7): 150-161.
[32]  Su, C., Yuan, X., Tao, R. and Shao, X. (2022) Time and Frequency Domain Connectedness Analysis of the Energy Transformation under Climate Policy. Technological Forecasting and Social Change, 184, Article ID: 121978.
https://doi.org/10.1016/j.techfore.2022.121978

[33]  Wei, Y., Zhang, J., Bai, L. and Wang, Y. (2023) Connectedness among El Niño-Southern Oscillation, Carbon Emission Allowance, Crude Oil and Renewable Energy Stock Markets: Time-and Frequency-Domain Evidence Based on TVP-VAR Model. Renewable Energy, 202, 289-309.
https://doi.org/10.1016/j.renene.2022.11.098

[34]  杨子晖, 陈里璇, 陈雨恬. 经济政策不确定性与系统性金融风险的跨市场传染——基于非线性网络关联的研究[J]. 经济研究, 2020, 55(1): 65-81.
[35]  宫晓莉, 熊熊. 波动溢出网络视角的金融风险传染研究[J]. 金融研究, 2020(5): 39-58.
[36]  郑挺国, 刘堂勇. 股市波动溢出效应及其影响因素分析[J]. 经济学(季刊), 2018, 17(2): 669-692.
[37]  Antonakakis, N., Chatziantoniou, I. and Gabauer, D. (2020) Refined Measures of Dynamic Connectedness Based on Time-Varying Parameter Vector Autoregressions. Journal of Risk and Financial Management, 13, Article No. 84.
https://doi.org/10.3390/jrfm13040084

[38]  Koop, G. and Korobilis, D. (2013) A New Index of Financial Conditions. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.2374980

[39]  Baruník, J. and Krehlík, T. (2018) Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk. Journal of Financial Econometrics, 16, 271-296.
https://doi.org/10.1093/jjfinec/nby001
[40]  Guo, J., Li, Y. and Shao, Q. (2022) Cross-Category Spillover Effects of Economic Policy Uncertainty between China and the US: Time and Frequency Evidence. Journal of Asian Economics, 80, Article ID: 101462.
https://doi.org/10.1016/j.asieco.2022.101462

[41]  Ma, D., Zhang, Y., Ji, Q., Zhao, W. and Zhai, P. (2024) Heterogeneous Impacts of Climate Change News on China’s Financial Markets. International Review of Financial Analysis, 91, Article ID: 103007.
https://doi.org/10.1016/j.irfa.2023.103007

[42]  Jiang, W. and Chen, Y. (2022) The Time-Frequency Connectedness among Metal, Energy and Carbon Markets Pre and during COVID-19 Outbreak. Resources Policy, 77, Article ID: 102763.
https://doi.org/10.1016/j.resourpol.2022.102763

[43]  戴志锋, 朱皓阳, 尹华. 我国石油, 黄金, 房地产和金融部门间系统风险动态溢出效应研究[J]. 系统工程理论与实践, 2022, 42(10): 2603-2616.
[44]  陈志英, 肖忠意, 李永奎. 国际股市隐含波动率溢出效应分析[J]. 复杂系统与复杂性科学, 2019, 16(4): 56-65.
[45]  丁时杰, 梁治朋, 谌金宇. 时频视角下气候政策不确定性与能源、金属市场的溢出效应研究[J]. 系统工程理论与实践, 2023, 43(8): 2222-2235.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133