全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

泛凋亡在脓毒症中的当前证据和治疗意义
Current Evidence and Therapeutic Implications of PANoptosis in Sepsis

DOI: 10.12677/acm.2025.153885, PP. 2490-2504

Keywords: 脓毒症,泛凋亡,细胞死亡
Sepsis
, PANoptosis, Cell Death

Full-Text   Cite this paper   Add to My Lib

Abstract:

脓毒症是一种严重的全身炎症反应综合征,其特征是机体对感染的免疫反应失调,导致多器官功能障碍。近年来,泛凋亡作为一种新的细胞死亡形式,在脓毒症及其并发症的发病过程中受到越来越多的关注。泛凋亡是由特定触发因素激活并由泛凋亡体复合物调节的炎症程序性细胞死亡途径,同时具有细胞焦亡、细胞凋亡和/或坏死性凋亡的关键特征。当前的研究证据表明,脓毒症患者在发病过程中会出现多种形式的程序性细胞死亡,泛凋亡是其中的重要形式。脓毒症导致的免疫细胞死亡,尤其是泛凋亡,是脓毒症免疫抑制的核心原因。一些研究还发现,泛凋亡相关组分在脓毒症患者的组织和血液中表达异常,这进一步证实了泛凋亡在脓毒症及其并发症中的重要作用。在治疗方面,针对泛凋亡的干预策略可能为脓毒症的治疗提供新的思路。通过抑制泛凋亡的关键分子或通路,可以减轻脓毒症及其并发症的病理损伤,改善患者的预后。然而,目前针对泛凋亡的治疗策略仍处于研究阶段,尚未广泛应用于临床。因此,未来的研究需要进一步深入探索泛凋亡在脓毒症中的具体作用机制,并开发针对泛凋亡的有效治疗策略。综上所述,泛凋亡在脓毒症及其并发症的发病过程中起着重要作用,其干预策略可能为脓毒症的治疗提供新的思路。未来的研究需要进一步深入探索泛凋亡的具体作用机制,并开展临床试验以验证其治疗意义。
Sepsis is a severe systemic inflammatory response syndrome characterized by the dysregulation of the body’s immune response to infection, leading to multiple organ dysfunction. In recent years, PANoptosis, as a new form of cell death, has attracted more and more attention in the pathogenesis of sepsis and its complications. PANoptosis is an inflammatory programmed cell death pathway activated by specific triggers and regulated by the PANoptotic complex, which simultaneously has the key features of pyroptosis, apoptosis, and/or necroptosis. Current research evidence suggests that patients with sepsis in the course of disease will appear a variety of forms of programmed cell death, and PANoptosis is one of the important forms. The death of immune cells, especially PANoptosis, caused by sepsis is the core cause of immunosuppression in sepsis. Some studies have also found that PANoptosis-related components are abnormally expressed in the tissues and blood of patients with sepsis, which further confirms the important role of PANoptosis in sepsis and its complications. In treatment, in view of the intervention strategy of the PANoptosis may provide a new train of thought for the treatment of sepsis. By inhibiting the key molecules or pathways of PANoptosis, the pathological damage of sepsis and its complications can be reduced and the prognosis of patients can be improved. However, current therapeutic strategies against PANoptosis are still in the research stage and have not been widely used in clinical practice. Therefore, future research is needed to further explore the specific mechanism of PANoptosis in sepsis and develop effective therapeutic strategies against PANoptosis. To sum up, the PANoptosis in the pathogenesis of sepsis and its COMPLICATIONS plays an important role in the process, its intervention strategy may provide a new train of thought for the treatment

References

[1]  Malireddi, R.K.S., Sharma, B.R. and Kanneganti, T. (2024) Innate Immunity in Protection and Pathogenesis during Coronavirus Infections and Covid-19. Annual Review of Immunology, 42, 615-645.
https://doi.org/10.1146/annurev-immunol-083122-043545
[2]  Kanneganti, T. (2020) Intracellular Innate Immune Receptors: Life Inside the Cell. Immunological Reviews, 297, 5-12.
https://doi.org/10.1111/imr.12912
[3]  Hitomi, J., Christofferson, D.E., Ng, A., Yao, J., Degterev, A., Xavier, R.J., et al. (2008) Identification of a Molecular Signaling Network That Regulates a Cellular Necrotic Cell Death Pathway. Cell, 135, 1311-1323.
https://doi.org/10.1016/j.cell.2008.10.044
[4]  Zychlinsky, A., Prevost, M.C. and Sansonetti, P.J. (1992) Shigella Flexneri Induces Apoptosis in Infected Macrophages. Nature, 358, 167-169.
https://doi.org/10.1038/358167a0
[5]  Kerr, J.F.R., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257.
https://doi.org/10.1038/bjc.1972.33
[6]  Anding, A.L. and Baehrecke, E.H. (2015) Autophagy in Cell Life and Cell Death. In: Current Topics in Developmental Biology, Elsevier, 67-91.
https://doi.org/10.1016/bs.ctdb.2015.07.012
[7]  Sundaram, B., Tweedell, R.E., Prasanth Kumar, S. and Kanneganti, T. (2024) The NLR Family of Innate Immune and Cell Death Sensors. Immunity, 57, 674-699.
https://doi.org/10.1016/j.immuni.2024.03.012
[8]  Christgen, S., Tweedell, R.E. and Kanneganti, T. (2022) Programming Inflammatory Cell Death for Therapy. Pharmacology & Therapeutics, 232, Article ID: 108010.
https://doi.org/10.1016/j.pharmthera.2021.108010
[9]  Sundaram, B., Pandian, N., Mall, R., Wang, Y., Sarkar, R., Kim, H.J., et al. (2023) NLRP12-PANoptosome Activates PANoptosis and Pathology in Response to Heme and PAMPs. Cell, 186, 2783-2801.e20.
https://doi.org/10.1016/j.cell.2023.05.005
[10]  Lee, S., Karki, R., Wang, Y., Nguyen, L.N., Kalathur, R.C. and Kanneganti, T. (2021) AIM2 Forms a Complex with Pyrin and ZBP1 to Drive PANoptosis and Host Defence. Nature, 597, 415-419.
https://doi.org/10.1038/s41586-021-03875-8
[11]  Karki, R., Sharma, B.R., Tuladhar, S., Williams, E.P., Zalduondo, L., Samir, P., et al. (2021) Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 184, 149-168.e17.
https://doi.org/10.1016/j.cell.2020.11.025
[12]  Dai, W., Zheng, P., Wu, J., Chen, S., Deng, M., Tong, X., et al. (2024) Integrated Analysis of Single-Cell RNA-Seq and Chipset Data Unravels PANoptosis-Related Genes in Sepsis. Frontiers in Immunology, 14, Article ID: 1247131.
https://doi.org/10.3389/fimmu.2023.1247131
[13]  Lin, J., Hu, P., Wang, Y., Tan, Y., Yu, K., Liao, K., et al. (2022) Phosphorylated NFS1 Weakens Oxaliplatin-Based Chemosensitivity of Colorectal Cancer by Preventing PANoptosis. Signal Transduction and Targeted Therapy, 7, Article No. 54.
https://doi.org/10.1038/s41392-022-00889-0
[14]  Sundaram, B., Pandian, N., Kim, H.J., Abdelaal, H.M., Mall, R., Indari, O., et al. (2024) NLRC5 Senses NAD+ Depletion, Forming a Panoptosome and Driving PANoptosis and Inflammation. Cell, 187, 4061-4077.e17.
https://doi.org/10.1016/j.cell.2024.05.034
[15]  Liu, H., Liu, Y., Fan, W. and Fan, B. (2022) Fusobacterium Nucleatum Triggers Proinflammatory Cell Death via Z-DNA Binding Protein 1 in Apical Periodontitis. Cell Communication and Signaling, 20, Article No. 196.
https://doi.org/10.1186/s12964-022-01005-z
[16]  Rajesh, Y. and Kanneganti, T. (2022) Innate Immune Cell Death in Neuroinflammation and Alzheimer’s Disease. Cells, 11, Article No. 1885.
https://doi.org/10.3390/cells11121885
[17]  Liu, X., Tang, A., Chen, J., Gao, N., Zhang, G. and Xiao, C. (2023) RIPK1 in the Inflammatory Response and Sepsis: Recent Advances, Drug Discovery and Beyond. Frontiers in Immunology, 14, Article ID: 1114103.
https://doi.org/10.3389/fimmu.2023.1114103
[18]  He, Y., Deng, J., Zhou, C., Jiang, S., Zhang, F., Tao, X., et al. (2023) Ursodeoxycholic Acid Alleviates Sepsis-Induced Lung Injury by Blocking PANoptosis via STING Pathway. International Immunopharmacology, 125, Article ID: 111161.
https://doi.org/10.1016/j.intimp.2023.111161
[19]  Shi, F., Li, Q., Xu, R., Yuan, L., Chen, Y., Shi, Z., et al. (2023) Blocking Reverse Electron Transfer-Mediated Mitochondrial DNA Oxidation Rescues Cells from PANoptosis. Acta Pharmacologica Sinica, 45, 594-608.
https://doi.org/10.1038/s41401-023-01182-8
[20]  D’Arcy, M.S. (2019) Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biology International, 43, 582-592.
https://doi.org/10.1002/cbin.11137
[21]  Ai, Y., Meng, Y., Yan, B., Zhou, Q. and Wang, X. (2024) The Biochemical Pathways of Apoptotic, Necroptotic, Pyroptotic, and Ferroptotic Cell Death. Molecular Cell, 84, 170-179.
https://doi.org/10.1016/j.molcel.2023.11.040
[22]  Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[23]  Pasparakis, M. and Vandenabeele, P. (2015) Necroptosis and Its Role in Inflammation. Nature, 517, 311-320.
https://doi.org/10.1038/nature14191
[24]  Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019) The Role of Necroptosis in Cancer Biology and Therapy. Molecular Cancer, 18, Article No. 100.
https://doi.org/10.1186/s12943-019-1029-8
[25]  Frank, D. and Vince, J.E. (2018) Pyroptosis versus Necroptosis: Similarities, Differences, and Crosstalk. Cell Death & Differentiation, 26, 99-114.
https://doi.org/10.1038/s41418-018-0212-6
[26]  Bolognese, A.C., Yang, W., Hansen, L.W., Denning, N., Nicastro, J.M., Coppa, G.F., et al. (2018) Inhibition of Necroptosis Attenuates Lung Injury and Improves Survival in Neonatal Sepsis. Surgery, 164, 110-116.
https://doi.org/10.1016/j.surg.2018.02.017
[27]  Kitur, K., Wachtel, S., Brown, A., Wickersham, M., Paulino, F., Peñaloza, H.F., et al. (2016) Necroptosis Promotes Staphylococcus aureus Clearance by Inhibiting Excessive Inflammatory Signaling. Cell Reports, 16, 2219-2230.
https://doi.org/10.1016/j.celrep.2016.07.039
[28]  Vasudevan, S.O., Behl, B. and Rathinam, V.A. (2023) Pyroptosis-Induced Inflammation and Tissue Damage. Seminars in Immunology, 69, Article ID: 101781.
https://doi.org/10.1016/j.smim.2023.101781
[29]  Zheng, X., Chen, W., Gong, F., Chen, Y. and Chen, E. (2021) The Role and Mechanism of Pyroptosis and Potential Therapeutic Targets in Sepsis: A Review. Frontiers in Immunology, 12, Article ID: 711939.
https://doi.org/10.3389/fimmu.2021.711939
[30]  Denton, D. and Kumar, S. (2018) Autophagy-Dependent Cell Death. Cell Death & Differentiation, 26, 605-616.
https://doi.org/10.1038/s41418-018-0252-y
[31]  Yan, X., Zhou, R. and Ma, Z. (2019) Autophagy-Cell Survival and Death. In: Advances in Experimental Medicine and Biology, Springer, 667-696.
https://doi.org/10.1007/978-981-15-0602-4_29
[32]  Sun, Y., Yao, X., Zhang, Q., Zhu, M., Liu, Z., Ci, B., et al. (2018) Beclin-1-Dependent Autophagy Protects the Heart during Sepsis. Circulation, 138, 2247-2262.
https://doi.org/10.1161/circulationaha.117.032821
[33]  Kim, Y.S., Jeong, Y.S., Bae, G.H., Kang, J.H., Lee, M., Zabel, B.A., et al. (2024) CD200R(High) Neutrophils with Dysfunctional Autophagy Establish Systemic Immunosuppression by Increasing Regulatory T Cells. Cellular & Molecular Immunology, 21, 349-361.
https://doi.org/10.1038/s41423-024-01136-y
[34]  Dong, Y., Wu, Y., Zhao, G. L., et al. (2019) Inhibition of Autophagy by 3-MA Promotes Hypoxia-Induced Apoptosis in Human Colorectal Cancer Cells. European Review for Medical and Pharmacological Sciences, 23, 1047-1054.
http://10.26355/eurrev_201902_16992
[35]  Ferreira, P.M.P., Sousa, R.W.R.d., Ferreira, J.R.d.O., Militão, G.C.G. and Bezerra, D.P. (2021) Chloroquine and Hydroxychloroquine in Antitumor Therapies Based on Autophagy-Related Mechanisms. Pharmacological Research, 168, Article ID: 105582.
https://doi.org/10.1016/j.phrs.2021.105582
[36]  Sun, L., Xiong, H., Chen, L., Dai, X., Yan, X., Wu, Y., et al. (2022) Deacetylation of ATG4B Promotes Autophagy Initiation under Starvation. Science Advances, 8, eabo0412.
https://doi.org/10.1126/sciadv.abo0412
[37]  Ocansey, D., Yuan, J., Wei, Z., Mao, F. and Zhang, Z. (2023) Role of Ferroptosis in the Pathogenesis and as a Therapeutic Target of Inflammatory Bowel Disease (Review). International Journal of Molecular Medicine, 51, Article No. 53.
https://doi.org/10.3892/ijmm.2023.5256
[38]  Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88.
https://doi.org/10.1038/s41419-020-2298-2
[39]  Zhou, B., Liu, J., Kang, R., Klionsky, D.J., Kroemer, G. and Tang, D. (2020) Ferroptosis Is a Type of Autophagy-Dependent Cell Death. Seminars in Cancer Biology, 66, 89-100.
https://doi.org/10.1016/j.semcancer.2019.03.002
[40]  Chen, F., Kang, R., Tang, D. and Liu, J. (2024) Ferroptosis: Principles and Significance in Health and Disease. Journal of Hematology & Oncology, 17, Article No. 41.
https://doi.org/10.1186/s13045-024-01564-3
[41]  Shen, K., Wang, X., Wang, Y., Jia, Y., Zhang, Y., Wang, K., et al. (2023) miR-125b-5p in Adipose Derived Stem Cells Exosome Alleviates Pulmonary Microvascular Endothelial Cells Ferroptosis via Keap1/Nrf2/GPX4 in Sepsis Lung Injury. Redox Biology, 62, Article ID: 102655.
https://doi.org/10.1016/j.redox.2023.102655
[42]  Zhang, H., Wu, D., Wang, Y., Guo, K., Spencer, C.B., Ortoga, L., et al. (2023) METTL3‐Mediated N6‐Methyladenosine Exacerbates Ferroptosis via m6A-IGF2BP2‐Dependent Mitochondrial Metabolic Reprogramming in Sepsis‐Induced Acute Lung Injury. Clinical and Translational Medicine, 13, e1389.
https://doi.org/10.1002/ctm2.1389
[43]  Jiang, C., Shi, Q., Yang, J., Ren, H., Zhang, L., Chen, S., et al. (2024) Ceria Nanozyme Coordination with Curcumin for Treatment of Sepsis-Induced Cardiac Injury by Inhibiting Ferroptosis and Inflammation. Journal of Advanced Research, 63, 159-170.
https://doi.org/10.1016/j.jare.2023.10.011
[44]  Liu, C., Zou, Q., Tang, H., Liu, J., Zhang, S., Fan, C., et al. (2023) Melanin Nanoparticles Alleviate Sepsis-Induced Myocardial Injury by Suppressing Ferroptosis and Inflammation. Bioactive Materials, 24, 313-321.
https://doi.org/10.1016/j.bioactmat.2022.12.026
[45]  Malireddi, R.K.S., Kesavardhana, S. and Kanneganti, T. (2019) ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 9, Article No. 406.
https://doi.org/10.3389/fcimb.2019.00406
[46]  Christgen, S., Zheng, M., Kesavardhana, S., Karki, R., Malireddi, R.K.S., Banoth, B., et al. (2020) Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article No. 237.
https://doi.org/10.3389/fcimb.2020.00237
[47]  Man, S.M. and Kanneganti, T. (2024) Innate Immune Sensing of Cell Death in Disease and Therapeutics. Nature Cell Biology, 26, 1420-1433.
https://doi.org/10.1038/s41556-024-01491-y
[48]  Gao, L., Shay, C. and Teng, Y. (2024) Cell Death Shapes Cancer Immunity: Spotlighting PANoptosis. Journal of Experimental & Clinical Cancer Research, 43, Article No. 168.
https://doi.org/10.1186/s13046-024-03089-6
[49]  Banoth, B., Tuladhar, S., Karki, R., Sharma, B.R., Briard, B., Kesavardhana, S., et al. (2020) ZBP1 Promotes Fungi-Induced Inflammasome Activation and Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Journal of Biological Chemistry, 295, 18276-18283.
https://doi.org/10.1074/jbc.ra120.015924
[50]  Oh, S. and Lee, S. (2023) Recent Advances in ZBP1-Derived PANoptosis against Viral Infections. Frontiers in Immunology, 14, Article ID: 1148727.
https://doi.org/10.3389/fimmu.2023.1148727
[51]  Karki, R., Sharma, B.R., Lee, E., Banoth, B., Malireddi, R.K.S., Samir, P., et al. (2020) Interferon Regulatory Factor 1 Regulates PANoptosis to Prevent Colorectal Cancer. JCI Insight, 5, e136720.
https://doi.org/10.1172/jci.insight.136720
[52]  Karki, R., Sundaram, B., Sharma, B.R., Lee, S., Malireddi, R.K.S., Nguyen, L.N., et al. (2021) ADAR1 Restricts ZBP1-Mediated Immune Response and PANoptosis to Promote Tumorigenesis. Cell Reports, 37, Article ID: 109858.
https://doi.org/10.1016/j.celrep.2021.109858
[53]  Malireddi, R.K.S., Karki, R., Sundaram, B., Kancharana, B., Lee, S., Samir, P., et al. (2021) Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth. ImmunoHorizons, 5, 568-580.
https://doi.org/10.4049/immunohorizons.2100059
[54]  Place, D.E., Lee, S. and Kanneganti, T. (2021) PANoptosis in Microbial Infection. Current Opinion in Microbiology, 59, 42-49.
https://doi.org/10.1016/j.mib.2020.07.012
[55]  Zeng, F., Zhang, Y., Wang, Z., Zhang, H., Meng, X., Wu, Y., et al. (2024) Neutrophil Extracellular Traps Promote Acetaminophen-Induced Acute Liver Injury in Mice via AIM2. Acta Pharmacologica Sinica, 45, 1660-1672.
https://doi.org/10.1038/s41401-024-01239-2
[56]  Wang, Y. and Kanneganti, T. (2021) From Pyroptosis, Apoptosis and Necroptosis to PANoptosis: A Mechanistic Compendium of Programmed Cell Death Pathways. Computational and Structural Biotechnology Journal, 19, 4641-4657.
https://doi.org/10.1016/j.csbj.2021.07.038
[57]  Xu, J., Zhu, M., Luo, P. and Gong, Y. (2024) Machine Learning Screening and Validation of PANoptosis-Related Gene Signatures in Sepsis. Journal of Inflammation Research, 17, 4765-4780.
https://doi.org/10.2147/jir.s461809
[58]  Yang, Z., Kao, X., Huang, N., Yuan, K., Chen, J. and He, M. (2024) Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification. Journal of Inflammation Research, 17, 1941-1956.
https://doi.org/10.2147/jir.s452608
[59]  Liu, X., Li, Y., Zhang, W., Gao, N., Chen, J., Xiao, C., et al. (2024) Inhibition of cIAP1/2 Reduces RIPK1 Phosphorylation in Pulmonary Endothelial Cells and Alleviate Sepsis-Induced Lung Injury and Inflammatory Response. Immunologic Research, 72, 841-850.
https://doi.org/10.1007/s12026-024-09491-8
[60]  Zhou, R., Ying, J., Qiu, X., Yu, L., Yue, Y., Liu, Q., et al. (2022) A New Cell Death Program Regulated by Toll-Like Receptor 9 through P38 Mitogen-Activated Protein Kinase Signaling Pathway in a Neonatal Rat Model with Sepsis Associated Encephalopathy. Chinese Medical Journal, 135, 1474-1485.
https://doi.org/10.1097/cm9.0000000000002010
[61]  Schwabe, R.F. and Luedde, T. (2018) Apoptosis and Necroptosis in the Liver: A Matter of Life and Death. Nature Reviews Gastroenterology & Hepatology, 15, 738-752.
https://doi.org/10.1038/s41575-018-0065-y
[62]  Malireddi, R.K.S., Gurung, P., Kesavardhana, S., Samir, P., Burton, A., Mummareddy, H., et al. (2019) Innate Immune Priming in the Absence of TAK1 Drives RIPK1 Kinase Activity-Independent Pyroptosis, Apoptosis, Necroptosis, and Inflammatory Disease. Journal of Experimental Medicine, 217, e20191644.
https://doi.org/10.1084/jem.20191644
[63]  Zhou, X., Yu, X., Wan, C., Li, F., Wang, Y., Zhang, K., et al. (2023) NINJ1 Regulates Platelet Activation and PANoptosis in Septic Disseminated Intravascular Coagulation. International Journal of Molecular Sciences, 24, Article No. 4168.
https://doi.org/10.3390/ijms24044168
[64]  Wang, Y., Fu, X., Shang, Z., Qiao, Y., Liu, Y., Zhou, L., et al. (2025) In Vivo and in Vitro Study on the Regulatory Mechanism of XiaoChaiHu Decoction on PANoptosis in Sepsis-Induced Cardiomyopathy. Journal of Ethnopharmacology, 336, Article ID: 118740.
https://doi.org/10.1016/j.jep.2024.118740
[65]  Zhou, X., Xin, G., Wan, C., Li, F., Wang, Y., Zhang, K., et al. (2024) Myricetin Reduces Platelet PANoptosis in Sepsis to Delay Disseminated Intravascular Coagulation. Biochemical and Biophysical Research Communications, 724, Article ID: 150140.
https://doi.org/10.1016/j.bbrc.2024.150140
[66]  Maiorino, L., Daßler-Plenker, J., Sun, L. and Egeblad, M. (2022) Innate Immunity and Cancer Pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 17, 425-457.
https://doi.org/10.1146/annurev-pathmechdis-032221-115501
[67]  Chen, S., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., et al. (2023) Macrophages in Immunoregulation and Therapeutics. Signal Transduction and Targeted Therapy, 8, Article No. 207.
https://doi.org/10.1038/s41392-023-01452-1
[68]  Vivier, E., Rebuffet, L., Narni-Mancinelli, E., Cornen, S., Igarashi, R.Y. and Fantin, V.R. (2024) Natural Killer Cell Therapies. Nature, 626, 727-736.
https://doi.org/10.1038/s41586-023-06945-1
[69]  Azoulay, E., Zuber, J., Bousfiha, A.A., Long, Y., Tan, Y., Luo, S., et al. (2024) Complement System Activation: Bridging Physiology, Pathophysiology, and Therapy. Intensive Care Medicine, 50, 1791-1803.
https://doi.org/10.1007/s00134-024-07611-4
[70]  Oh, S., Lee, J., Oh, J., Yu, G., Ryu, H., Kim, D., et al. (2023) Integrated NLRP3, AIM2, NLRC4, Pyrin Inflammasome Activation and Assembly Drive PANoptosis. Cellular & Molecular Immunology, 20, 1513-1526.
https://doi.org/10.1038/s41423-023-01107-9
[71]  Zheng, M., Karki, R., Vogel, P. and Kanneganti, T. (2020) Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense. Cell, 181, 674-687.e13.
https://doi.org/10.1016/j.cell.2020.03.040
[72]  Yang, D., Wang, X., Sun, Y., Shao, Y. and Shi, X. (2024) Identification and Experimental Validation of Genes Associated with Programmed Cell Death in Dendritic Cells of the Thyroid Tissue in Hashimoto’s Thyroiditis. International Immunopharmacology, 142, Article ID: 113083.
https://doi.org/10.1016/j.intimp.2024.113083
[73]  Karki, R., Lee, S., Mall, R., Pandian, N., Wang, Y., Sharma, B.R., et al. (2022) ZBP1-Dependent Inflammatory Cell Death, PANoptosis, and Cytokine Storm Disrupt IFN Therapeutic Efficacy during Coronavirus Infection. Science Immunology, 7, eabo6294.
https://doi.org/10.1126/sciimmunol.abo6294
[74]  Fukuda, K., Okamura, K., Riding, R.L., Fan, X., Afshari, K., Haddadi, N., et al. (2021) AIM2 Regulates Anti-Tumor Immunity and Is a Viable Therapeutic Target for Melanoma. Journal of Experimental Medicine, 218, e20200962.
https://doi.org/10.1084/jem.20200962
[75]  Varga, Z., Rácz, E., Mázló, A., Korodi, M., Szabó, A., Molnár, T., et al. (2021) Cytotoxic Activity of Human Dendritic Cells Induces RIPK1-Dependent Cell Death. Immunobiology, 226, Article ID: 152032.
https://doi.org/10.1016/j.imbio.2020.152032
[76]  Clement, C.C., D’Alessandro, A., Thangaswamy, S., Chalmers, S., Furtado, R., Spada, S., et al. (2021) 3-Hydroxy-L-Kynurenamine Is an Immunomodulatory Biogenic Amine. Nature Communications, 12, Article No. 4447.
https://doi.org/10.1038/s41467-021-24785-3
[77]  Xiao, H., Zhao, Q., Yuan, J., Liang, W., Wu, R., Wen, Y., et al. (2023) IFN-γ Promotes PANoptosis in Pasteurella Multocida Toxin-Induced Pneumonia in Mice. Veterinary Microbiology, 285, Article ID: 109848.
https://doi.org/10.1016/j.vetmic.2023.109848
[78]  Yang, M., Long, D., Hu, L., Zhao, Z., Li, Q., Guo, Y., et al. (2021) AIM2 Deficiency in B Cells Ameliorates Systemic Lupus Erythematosus by Regulating Blimp-1-Bcl-6 Axis-Mediated B-Cell Differentiation. Signal Transduction and Targeted Therapy, 6, Article No. 341.
https://doi.org/10.1038/s41392-021-00725-x
[79]  Zheng, Z., Li, K., Yang, Z., Wang, X., Shen, C., Zhang, Y., et al. (2024) Transcriptomic Analysis Reveals Molecular Characterization and Immune Landscape of PANoptosis-Related Genes in Atherosclerosis. Inflammation Research, 73, 961-978.
https://doi.org/10.1007/s00011-024-01877-6
[80]  Sun, W., Li, P., Wang, M., Xu, Y., Shen, D., Zhang, X., et al. (2023) Molecular Characterization of PANoptosis-Related Genes with Features of Immune Dysregulation in Systemic Lupus Erythematosus. Clinical Immunology, 253, Article ID: 109660.
https://doi.org/10.1016/j.clim.2023.109660
[81]  Wu, L., Jiao, X., Jing, M., Zhang, S., Wang, Y., Li, C., et al. (2024) Discovery of PANoptosis-Related Signatures Correlates with Immune Cell Infiltration in Psoriasis. PLOS ONE, 19, e0310362.
https://doi.org/10.1371/journal.pone.0310362
[82]  Chen, H., Xia, Z., Qing, B., Gu, L., Chen, Y., Wang, J., et al. (2024) Molecular Characterization of PANoptosis-Related Genes Associated with Immune Infiltration and Prognosis in Idiopathic Pulmonary Fibrosis. International Immunopharmacology, 143, Article ID: 113572.
https://doi.org/10.1016/j.intimp.2024.113572
[83]  Zhuang, L., Sun, Q., Huang, S., Hu, L. and Chen, Q. (2023) A Comprehensive Analysis of PANoptosome to Prognosis and Immunotherapy Response in Pan-Cancer. Scientific Reports, 13, Article No. 3877.
https://doi.org/10.1038/s41598-023-30934-z
[84]  Shi, X., Gao, X., Liu, W., Tang, X., Liu, J., Pan, D., et al. (2023) Construction of the PANoptosis-Related Gene Model and Characterization of Tumor Microenvironment Infiltration in Hepatocellular Carcinoma. Oncology Research, 31, 569-590.
https://doi.org/10.32604/or.2023.028964
[85]  Zhang, Y.Y., Zhao, H.S., Sun, Y.F., et al. (2023) Development and Validation of Biomarkers Related to PANoptosis in Osteoarthritis. European Review for Medical and Pharmacological Sciences, 27, 7444-7458.
http://10.26355/eurrev_202308_33396
[86]  Messaoud-Nacer, Y., Culerier, E., Rose, S., Maillet, I., Rouxel, N., Briault, S., et al. (2022) STING Agonist diABZI-Induces PANoptosis and DNA Mediated Acute Respiratory Distress Syndrome (ARDS). Cell Death & Disease, 13, Article No. 269.
https://doi.org/10.1038/s41419-022-04664-5
[87]  Wang, Y., Shi, Y., Shao, Y., Lu, X., Zhang, H. and Miao, C. (2024) S100A8/A9hi Neutrophils Induce Mitochondrial Dysfunction and PANoptosis in Endothelial Cells via Mitochondrial Complex I Deficiency during Sepsis. Cell Death & Disease, 15, Article No. 462.
https://doi.org/10.1038/s41419-024-06849-6
[88]  Samir, P., Malireddi, R.K.S. and Kanneganti, T. (2020) The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article No. 238.
https://doi.org/10.3389/fcimb.2020.00238
[89]  Zhu, P., Ke, Z., Chen, J., Li, S., Ma, T. and Fan, X. (2023) Advances in Mechanism and Regulation of PANoptosis: Prospects in Disease Treatment. Frontiers in Immunology, 14, Article ID: 1120034.
https://doi.org/10.3389/fimmu.2023.1120034
[90]  Chen, X., Li, W., Ren, J., Huang, D., He, W., Song, Y., et al. (2013) Translocation of Mixed Lineage Kinase Domain-Like Protein to Plasma Membrane Leads to Necrotic Cell Death. Cell Research, 24, 105-121.
https://doi.org/10.1038/cr.2013.171
[91]  Chen, W., Gullett, J.M., Tweedell, R.E. and Kanneganti, T. (2023) Innate Immune Inflammatory Cell Death: PANoptosis and PANoptosomes in Host Defense and Disease. European Journal of Immunology, 53, e2250235.
https://doi.org/10.1002/eji.202250235
[92]  Gong, T., Fu, Y., Wang, Q., Loughran, P.A., Li, Y., Billiar, T.R., et al. (2024) Decoding the Multiple Functions of ZBP1 in the Mechanism of Sepsis-Induced Acute Lung Injury. Communications Biology, 7, Article No. 1361.
https://doi.org/10.1038/s42003-024-07072-x
[93]  Fritsch, M., Günther, S.D., Schwarzer, R., Albert, M., Schorn, F., Werthenbach, J.P., et al. (2019) Caspase-8 Is the Molecular Switch for Apoptosis, Necroptosis and Pyroptosis. Nature, 575, 683-687.
https://doi.org/10.1038/s41586-019-1770-6
[94]  Jiang, M., Qi, L., Li, L., Wu, Y., Song, D. and Li, Y. (2021) Caspase‐8: A Key Protein of Cross‐talk Signal Way in “PANoptosis” in Cancer. International Journal of Cancer, 149, 1408-1420.
https://doi.org/10.1002/ijc.33698
[95]  Lorente, L., Martín, M.M., Ortiz-López, R., González-Rivero, A.F., Pérez-Cejas, A., Martín, M., et al. (2022) Blood Caspase-8 Concentrations and Mortality among Septic Patients. Medicina Intensiva, 46, 8-13.
https://doi.org/10.1016/j.medin.2020.06.016
[96]  Jiang, J., Li, W., Zhou, L., Liu, D., Wang, Y., An, J., et al. (2023) Platelet ITGA2B Inhibits Caspase-8 and Rip3/Mlkl-Dependent Platelet Death Though PTPN6 during Sepsis. iScience, 26, Article ID: 107414.
https://doi.org/10.1016/j.isci.2023.107414
[97]  Zhou, H., Gong, H., Liu, H., Jing, G., Xia, Y., Wang, Y., et al. (2024) Erbin Alleviates Sepsis-Induced Cardiomyopathy by Inhibiting RIPK1-Dependent Necroptosis through Activating PKA/CREB Pathway. Cellular Signalling, 123, Article ID: 111374.
https://doi.org/10.1016/j.cellsig.2024.111374
[98]  Ling, Z., Lv, Q., Li, J., Lu, R., Chen, L., Xu, W., et al. (2023) Protective Effect of a Novel RIPK1 Inhibitor, Compound 4-155, in Systemic Inflammatory Response Syndrome and Sepsis. Inflammation, 46, 1796-1809.
https://doi.org/10.1007/s10753-023-01842-1
[99]  Chen, H., Li, Y., Wu, J., Li, G., Tao, X., Lai, K., et al. (2020) RIPK3 Collaborates with GSDMD to Drive Tissue Injury in Lethal Polymicrobial Sepsis. Cell Death & Differentiation, 27, 2568-2585.
https://doi.org/10.1038/s41418-020-0524-1
[100]  Zheng, M. and Kanneganti, T. D. (2020) Newly Identified Function of Caspase-6 in ZBP1-Mediated Innate Immune Responses, NLRP3 Inflammasome Activation, PANoptosis, and Host Defense. Journal of Cellular Immunology, 2, 341-347.
http://10.33696/immunology.2.064
[101]  Bynigeri, R.R., Malireddi, R.K.S., Mall, R., Connelly, J.P., Pruett-Miller, S.M. and Kanneganti, T. (2024) The Protein Phosphatase PP6 Promotes RIPK1-Dependent PANoptosis. BMC Biology, 22, Article No. 122.
https://doi.org/10.1186/s12915-024-01901-5
[102]  Liu, L., Heng, J., Deng, D., Zhao, H., Zheng, Z., Liao, L., et al. (2023) Sulconazole Induces PANoptosis by Triggering Oxidative Stress and Inhibiting Glycolysis to Increase Radiosensitivity in Esophageal Cancer. Molecular & Cellular Proteomics, 22, Article ID: 100551.
https://doi.org/10.1016/j.mcpro.2023.100551
[103]  Wang, J., Chen, S., Chen, L. and Zhou, D. (2024) Data-Driven Analysis That Integrates Bioinformatics and Machine Learning Uncovers PANoptosis-Related Diagnostic Genes in Early Pediatric Septic Shock. Heliyon, 10, e37853.
https://doi.org/10.1016/j.heliyon.2024.e37853

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133