全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Ni Substitution on the Structural, Optical and Electronic Behavior of La2CrMnO6 Double Perovskite for Energy Applications

DOI: 10.4236/ojcm.2025.152005, PP. 95-108

Keywords: Solid State Reaction, Band Gap, XPS, Valance State

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poly-crystalline double perovskite La2Cr1xNixMnO6 (x = 0.00, 0.50, 1.00) has been synthesized by solid state reaction (SSR) method. Structural properties of La2Cr1xNixMnO6 have been investigated using X-ray diffraction (XRD). The XRD pattern confirmed the single-phase formation of the orthorhombic structure having Pbnm symmetry. The morphological analysis of the synthesized sample was conducted using Scanning Electron Microscopy (SEM). The average particle size, determined from SEM micrographs, is 2 μm (x = 0.00), 1.56 μm (x = 0.50), and 1.32 μm (x = 1.00), indicating a progressive decrease in particle size with increasing nickel doping. The optical characteristics of the samples have been examined using UV-visible spectroscopy. The band gap has been found to be decreased with Ni doping. The XPS analysis verifies the presence of all elements at their respective binding energies and shows the splitting of Cr and Ni ions, which is attributed to spin-orbit coupling. The tuning of the optical band gap and the reduction in particle size in Ni-substituted La2CrMnO6 emphasize its potential for advancing future technological and energy applications.

References

[1]  Artini, C. (2017) Crystal Chemistry, Stability and Properties of Interlanthanide Perovskites: A Review. Journal of the European Ceramic Society, 37, 427-440.
https://doi.org/10.1016/j.jeurceramsoc.2016.08.041
[2]  Imada, M., Fujimori, A. and Tokura, Y. (1998) Metal-Insulator Transitions. Reviews of Modern Physics, 70, 1039-1263.
https://doi.org/10.1103/revmodphys.70.1039
[3]  Monthoux, P., Pines, D. and Lonzarich, G.G. (2007) Superconductivity without Phonons. Nature, 450, 1177-1183.
https://doi.org/10.1038/nature06480
[4]  Zhou, H.Y. and Chen, X.M. (2017) Structural Distortions, Orbital Ordering and Physical Properties of Double Perovskite R2CoMnO6 Calculated by First-Principles. Journal of Physics: Condensed Matter, 29, Article ID: 145701.
https://doi.org/10.1088/1361-648x/aa5e3e
[5]  Newnham, R.E. and Ruschau, G.R. (1991) Smart Electroceramics. Journal of the American Ceramic Society, 74, 463-480.
https://doi.org/10.1111/j.1151-2916.1991.tb04047.x
[6]  Lan, C., Zhao, S., Xu, T., Ma, J., Hayase, S. and Ma, T. (2016) Investigation on Structures, Band Gaps, and Electronic Structures of Lead Free La2NiMnO6 Double Perovskite Materials for Potential Application of Solar Cell. Journal of Alloys and Compounds, 655, 208-214.
https://doi.org/10.1016/j.jallcom.2015.09.187
[7]  Aarif Ul Islam, S. and Ikram, M. (2019) Structural Stability Improvement, Williamson Hall Analysis and Band-Gap Tailoring through A-Site Sr Doping in Rare Earth Based Double Perovskite La2NiMnO6. Rare Metals, 38, 805-813.
https://doi.org/10.1007/s12598-019-01207-4
[8]  Sariful Sheikh, M., Ghosh, D., Dutta, A., Bhattacharyya, S. and Sinha, T.P. (2017) Lead Free Double Perovskite Oxides Ln2NiMnO6 (Ln = La, Eu, Dy, Lu), a New Promising Material for Photovoltaic Application. Materials Science and Engineering: B, 226, 10-17.
https://doi.org/10.1016/j.mseb.2017.08.027
[9]  Jose, R., Konopka, J., Yang, X., Konopka, A., Ishikawa, M. and Koshy, J. (2004) Crystal Structure and Dielectric Properties of a New Complex Perovskite Oxide Ba2LaSbO6. Applied Physics A, 79, 2041-2047.
https://doi.org/10.1007/s00339-004-2672-4
[10]  Mandal, P.R., Sahoo, R.C. and Nath, T.K. (2014) A Comparative Study of Structural, Magnetic, Dielectric Behaviors and Impedance Spectroscopy for Bulk and Nanometric Double Perovskite Sm2CoMnO6. Materials Research Express, 1, Article ID: 046108.
https://doi.org/10.1088/2053-1591/1/4/046108
[11]  Blasse, G. (1965) Ferromagnetic Interactions in Non-Metallic Perovskites. Journal of Physics and Chemistry of Solids, 26, 1969-1971.
https://doi.org/10.1016/0022-3697(65)90231-3
[12]  Dass, R.I. and Goodenough, J.B. (2003) Multiple Magnetic Phases of La2CoMnO6δ (0 < ~δ< ~0.05). Physical Review B, 67, Article ID: 014401.
https://doi.org/10.1103/physrevb.67.014401
[13]  Dass, R.I., Yan, J. and Goodenough, J.B. (2003) Oxygen Stoichiometry, Ferromagnetism, and Transport Properties of La2−xNiMnO6+δ. Physical Review B, 68, Article ID: 064415.
https://doi.org/10.1103/physrevb.68.064415
[14]  Androulakis, J., Katsarakis, N. and Giapintzakis, J. (2002) Realization of La2MnVO6: Search for Half-Metallic Antiferromagnetism? Solid State Communications, 124, 77-81.
https://doi.org/10.1016/s0038-1098(02)00490-8
[15]  Palakkal, J.P., Raj Sankar, C. and Varma, M.R. (2017) Multiple Magnetic Transitions, Griffiths-Like Phase, and Magnetoresistance in La2CrMnO6. Journal of Applied Physics, 122, Article ID: 073907.
https://doi.org/10.1063/1.4999031
[16]  Singh, D. and Mahajan, A. (2015) Effect of A-Site Cation Size on the Structural, Magnetic, and Electrical Properties of La1−xNdxMn0.5Cr0.5O3 Perovskites. Journal of Alloys and Compounds, 644, 172-179.
https://doi.org/10.1016/j.jallcom.2015.04.180
[17]  Yang, D., Zhao, P., Huang, S., Yang, T. and Huo, D. (2019) Ferrimagnetism, Resistivity, and Magnetic Exchange Interactions in Double Perovskite La2CrMnO6. Results in Physics, 12, 344-348.
https://doi.org/10.1016/j.rinp.2018.11.090
[18]  Mahato, D.K., Molak, A., Szeremeta, A.Z., Gruszka, I., Zajdel, P., Pilch, M., et al. (2018) Determination of Polaronic Conductivity in Disordered Double Perovskite La2CrMnO6. Journal of Electroceramics, 42, 136-146.
https://doi.org/10.1007/s10832-018-0164-8
[19]  Khan, J.A. and Ahmad, J. (2019) Double Perovskite La2CrMnO6: Synthesis, Optical and Transport Properties. Materials Research Express, 6, Article ID: 115906.
https://doi.org/10.1088/2053-1591/ab4728
[20]  Singh, A., Vasishth, A. and Kumar, A. (2023) Hydrothermal Synthesis and Electrochemical Performance of Mesoporous La2CrMnO6 Double Perovskite for Energy Storage Applications. Physica Status Solidi (a), 220, Article ID: 2300198.
https://doi.org/10.1002/pssa.202300198
[21]  Rahumi, O., Rath, M.K., Meshi, L., Rozenblium, I. and Borodianskiy, K. (2024) Ni-doped SFM Double-Perovskite Electrocatalyst for High-Performance Symmetrical Direct-Ammonia-Fed Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 16, 53652-53664.
https://doi.org/10.1021/acsami.4c07968
[22]  Chen, L., Yuan, C., Xue, J. and Wang, J. (2005) B-Site Ordering and Magnetic Behaviours in Ni-Doped Double Perovskite Sr2FeMoO6. Journal of Physics D: Applied Physics, 38, 4003-4008.
https://doi.org/10.1088/0022-3727/38/22/001
[23]  Dai, N., Feng, J., Wang, Z., Jiang, T., Sun, W., Qiao, J., et al. (2013) Synthesis and Characterization of B-Site Ni-Doped Perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as Cathodes for SOFCs. Journal of Materials Chemistry A, 1, 14147.
https://doi.org/10.1039/c3ta13607h
[24]  Meng, X., Wang, Y., Zhao, Y., Zhang, T., Yu, N., Chen, X., et al. (2020) In-Situ Exsolution of Nanoparticles from Ni Substituted Sr2Fe1.5Mo0.5O6 Perovskite Oxides with Different Ni Doping Contents. Electrochimica Acta, 348, Article ID: 136351.
https://doi.org/10.1016/j.electacta.2020.136351
[25]  Harbi, A., Moutaabbid, H., Li, Y., Renero-Lecuna, C., Fialin, M., Le Godec, Y., et al. (2019) The Effect of Cation Disorder on Magnetic Properties of New Double Perovskites La2NixCo1−xMnO6 (x = 0.2–0.8). Journal of Alloys and Compounds, 778, 105-114.
https://doi.org/10.1016/j.jallcom.2018.10.360
[26]  Solanki, N., Choudhary, R.J. and Kaurav, N. (2023) Qualitative Study of Structural Phase Transition in Nickel Doped La2CoTi(1−x)NixO6 Double Perovskite. Journal of Alloys and Compounds, 943, Article ID: 169126.
https://doi.org/10.1016/j.jallcom.2023.169126
[27]  Chen, T., Liu, R., Tang, S., Li, X., Ye, S., Duan, X., et al. (2021) Ni2+ Doping Induced Structural Phase Transition and Photoluminescence Enhancement of CsPbBr3. AIP Advances, 11, Article ID: 115008.
https://doi.org/10.1063/5.0067153
[28]  Bajpai, N., Saleem, M. and Mishra, A. (2020) Effect of Bismuth (Bi3+) Substitution on Structural, Optical, Dielectric and Magnetic Nature of La2CoMnO6 Double Perovskite. Journal of Materials Science: Materials in Electronics, 32, 12890-12902.
https://doi.org/10.1007/s10854-020-04348-w
[29]  Qahtan, A.A.A., Husain, S. and Khan, W. (2021) The Effect of Ni Doping on the Structural, Optical and Dielectric Properties of Nanocrystalline YbCrO3. Journal of Physics and Chemistry of Solids, 159, Article ID: 110280.
https://doi.org/10.1016/j.jpcs.2021.110280
[30]  Es-soufi, H., Sayyed, M.I., Almuqrin, A.H., Rajesh, R., Lima, A.R.F., Bih, H., et al. (2023) Crystallographic, Structural, and Electrical Properties of W6+ Substituted with Mo6+ in Crystalline Phases Such as TTB Structure. Crystals, 13, Article No. 483.
https://doi.org/10.3390/cryst13030483
[31]  Nasir, M., Khan, M., Rini, E.G., Agbo, S.A. and Sen, S. (2021) Exploring the Role of Fe Substitution on Electronic, Structural, and Magnetic Properties of La2NiMnO6 Double Perovskites. Applied Physics A, 127, Article No. 208.
https://doi.org/10.1007/s00339-021-04361-8
[32]  Es-Soufi, H., Lahmar, A., Rajesh, R., Bih, H. and Bih, L. (2024) Exploration of the Crystal Structure and Impedance Spectroscopy Characteristics in Ba0.54Na0.46Nb1.29W0.37O5 Crystalline Phase. Nexus of Future Materials, 1, 20-25.
https://doi.org/10.70128/584045
[33]  Es-soufi, H., Lahmar, A., Rajesh, R., Sayyed, M.I., Bih, H. and Bih, L. (2024) Crystallographic, Structural, and Electrical Characteristics of a New Molybdate Crystalline Phase within the NaNbO3-BaNb2O6-MoO3 System. Optical and Quantum Electronics, 56, Article No. 1337.
https://doi.org/10.1007/s11082-024-07116-w
[34]  Yi, K., Tang, Q., Wu, Z. and Zhu, X. (2022) Unraveling the Structural, Dielectric, Magnetic, and Optical Characteristics of Nanostructured La2NiMnO6 Double Perovskites. Nanomaterials, 12, Article No. 979.
https://doi.org/10.3390/nano12060979
[35]  Mohanty, S. and Behera, S. (2023) Multifunctional Properties of Transition Metal Based Double Perovskite Ceramics. Chemical Physics Impact, 7, Article ID: 100259.
https://doi.org/10.1016/j.chphi.2023.100259
[36]  Saleem, M., Tiwari, S., Soni, M., Bajpai, N. and Mishra, A. (2020) Structural, Optical and Other Spectral Studies of Transition Metal Ti4+-Doped Zn-Cd Oxide Nanomaterials. International Journal of Modern Physics B, 34, Article ID: 2050033.
https://doi.org/10.1142/s0217979220500332
[37]  Zhou, W., Deng, H., Yu, L., Yang, P. and Chu, J. (2015) Optical Band-Gap Narrowing in Perovskite Ferroelectric ABO3 Ceramics (A = Pb, Ba; B = Ti) by Ion Substitution Technique. Ceramics International, 41, 13389-13392.
https://doi.org/10.1016/j.ceramint.2015.07.127
[38]  Mohanty, S., Satapathy, S., Nayak, M., Rai, S., Singh, R. and Behera, S. (2024) Effect of Low Ni-Substitution on Optical, Dielectric and Magnetic Properties of Double Perovskite Mg2FeNbO6. Inorganic Chemistry Communications, 165, Article ID: 112513.
https://doi.org/10.1016/j.inoche.2024.112513
[39]  Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R. and Smart, R.S.C. (2011) Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257, 2717-2730.
https://doi.org/10.1016/j.apsusc.2010.10.051
[40]  Uekawa, N. and Kaneko, K. (1996) Dopant Reduction in P-Type Oxide Films upon Oxygen Absorption. The Journal of Physical Chemistry, 100, 4193-4198.
https://doi.org/10.1021/jp952784m

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133