全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

伪欧式空间中的拉格朗日平均曲率流研究
Research on the Lagrangian Mean Curvature Flow in Pseudo-Euclidean

DOI: 10.12677/pm.2025.153091, PP. 177-188

Keywords: 平均曲率流,特殊拉格朗日抛物方程,光滑解,一致收敛,Arzelà-Ascoli定理
The Mean Curvature Flow
, The Special Lagrangian Parabolic Equation, Smooth Solution, Uniform Convergence, Arzelà-Ascoli Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文讨论在伪欧氏空间中,带有以下初始条件的拉格朗日平均曲率流方程 { dY( x,t ) dt =H Y( x,0 )= Y 0 ( x ) 。其中,该方程等价于特殊拉格朗日抛物方程 { u t = F τ ( D 2 u ),??t>0,x n u= u 0 ( x ),?????????t=0,x n 。通过构造函数,将证明若 0<τ< π 4 π 4 <τ< π 2 ,该抛物方程存在唯一光滑解 u(

References

[1]  Chen, J.Y. and Li, J.Y. (2004) Singularity of Mean Curvature Flow of Lagrangian Submanifolds. Inventiones Mathematicae, 156, 25-51.
https://doi.org/10.1007/s00222-003-0332-5
[2]  Neves, A. (2013) Finite Time Singularities for Lagrangian Mean Curvature Flow. Annals of Mathematics, 177, 1029-1076.
https://doi.org/10.4007/annals.2013.177.3.5
[3]  Wang, M.T. (2002) Long-Time Existence and Convergence of Graphic Mean Curvature Flow in Arbitrary Codimension. Inventiones Mathematicae, 48, 525-543.
https://doi.org/10.1007/s002220100201
[4]  Smoczyk, K. and Wang, M.T. (2002) Mean Curvature Flows of Lagrangian Submanifolds with Convex Potentials. Journal of Differential Geometry, 62, 243-257.
https://doi.org/10.4310/jdg/1090950193
[5]  Smoczyk, K. (2004) Longtime Existence of the Lagrangian Mean Curvature Flow. Calculus of Variations and Partial Differential Equations, 20, 25-46.
https://doi.org/10.1007/s00526-003-0226-9
[6]  Chau, A., Chen, J.Y. and He, W.L. (2009) Entire Self-Similar Solutions to Lagrangian Mean Curvature Flow. arXiv: 0905.3869.
[7]  Huang, R.L. (2011) Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space. Chinese Annals of Mathematics, Series B, 32, 187-200.
https://doi.org/10.1007/s11401-011-0639-2
[8]  Chau, A., Chen, J.Y. and Yuan. Y. (2013) Lagrangian Mean Curvature Flow for Entire Lipschitz Graphs. Mathematische Annalen, 357, 165-183.
https://doi.org/10.1007/s00208-013-0897-2
[9]  Huang, R.L., Ou, Q.Z. and Wang, W.L. (2022) On the Entire Self-Shrinking Solutions to Lagrangian Mean Curvature Flow II. Calculus of Variations and Partial Differential Equations, 61, Article No. 225.
https://doi.org/10.1007/s00526-022-02333-1
[10]  Warren, M. (2016) A Liouville Property for Gradient Graphs and a Bernstein Problem for Hamiltonian Stationary Equations. Manuscripta Mathematica, 150, 151-157.
https://doi.org/10.1007/s00229-015-0801-3
[11]  Huang, R.L. and Wang, Z.Z. (2011) On the Entire Self-Shrinking Solutions to Lagrangian Mean Curvature Flow. Calculus of Variations and Partial Differential Equations, 41, 321-339.
https://doi.org/10.1007/s00526-010-0364-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133