全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类几乎单型的拟本原图的刻画
The Characterization of a Class of Quasiprimitive Graphs Admitting an Almost Simple Group

DOI: 10.12677/pm.2025.153087, PP. 156-161

Keywords: 边传递图,几乎单群,拟本原,自同构群
Edge-Transitive Graph
, Almost Simple Group, Quasiprimitive, Automorphism Group

Full-Text   Cite this paper   Add to My Lib

Abstract:

Γ 是一个连通图, GAutΓ Γ G -边传递但不是 ( G,2 ) -弧传递的。在奇数阶2倍素数度图的研究基础上,本文聚焦于拟本原非2-弧传递的情况,通过研究几乎单群 G 作用在 V 上的拟本原情形,对奇素数幂阶2倍素数度非2-弧传递图展开刻画。研究发现,此类图的结构较为特殊,要么是完全图 K 7 K 11 ,要么同构于一个27阶10度图。这一结论进一步丰富了图论中关于特殊度数和传递性图的分类成果,为后续相关研究提供了重要参考。
Let Γ be a connected graph, GAutΓ , and Γ be G -edge-transitive but not ( G,2 ) -arc-transitive. Based on the research of graphs with odd order and twice prime valency, this paper focuses on the quasiprimitive

References

[1]  Praeger, C.E. (1993) An O’Nan-Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-Arc Transitive Graphs. Journal of the London Mathematical Society, 2, 227-239.
https://doi.org/10.1112/jlms/s2-47.2.227
[2]  Praeger, C.E. (1997) Finite Quasiprimitive Graphs. In: Bailey, R.A., Ed., Surveys in Combinatorics, Cambridge University Press, 65-86.
https://doi.org/10.1017/cbo9780511662119.005
[3]  Frucht, R. (1939) Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compositio Mathematica, 6, 239-250.
[4]  Tutte, W.T. (1947) A Family of Cubical Graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 43, 459-474.
https://doi.org/10.1017/s0305004100023720
[5]  Weiss, R. (1981) The Nonexistence of 8-Transitive Graphs. Combinatorica, 1, 309-311.
https://doi.org/10.1007/bf02579337
[6]  Li, C.H. (2001) On Finite S-Transitive Graphs of Odd Order. Journal of Combinatorial Theory, Series B, 81, 307-317.
https://doi.org/10.1006/jctb.2000.2012
[7]  Gui Fang, X. and Praeger, C.E. (1999) Finite Two-Are Transitive Graphs Admitting a REE Simple Group. Communications in Algebra, 27, 3755-3769.
https://doi.org/10.1080/00927879908826660
[8]  Gui Fang, X. and Preager, C.E. (1999) Fintte Two-Arc Transitive Graphs Admitting a Suzuki Simple Group. Communications in Algebra, 27, 3727-3754.
https://doi.org/10.1080/00927879908826659
[9]  Li, C.H. and Pan, J. (2008) Finite 2-Arc-Transitive Abelian Cayley Graphs. European Journal of Combinatorics, 29, 148-158.
https://doi.org/10.1016/j.ejc.2006.12.001
[10]  Li, C.H., Li, J.J. and Lu, Z.P. (2023) Two-Arc-Transitive Graphs of Odd Order: I. Journal of Algebraic Combinatorics, 57, 1253-1264.
https://doi.org/10.1007/s10801-023-01224-8
[11]  Li, C.H., Li, J.J. and Lu, Z.P. (2021) Two-Arc-Transitive Graphs of Odd Order—II. European Journal of Combinatorics, 96, Article ID: 103354.
https://doi.org/10.1016/j.ejc.2021.103354
[12]  Guo, S., Li, Y. and Hua, X. (2016) (G, S)-Transitive Graphs of Valency 7. Algebra Colloquium, 23, 493-500.
https://doi.org/10.1142/s100538671600047x
[13]  Zhou, J. and Feng, Y. (2010) On Symmetric Graphs of Valency Five. Discrete Mathematics, 310, 1725-1732.
https://doi.org/10.1016/j.disc.2009.11.019
[14]  Zhou, J. (2009) Tetravalent s-Transitive Graphs of Order 4p. Discrete Mathematics, 309, 6081-6086.
https://doi.org/10.1016/j.disc.2009.05.014
[15]  Praeger, C.E. and Xu, M. (1989) A Characterization of a Class of Symmetric Graphs of Twice Prime Valency. European Journal of Combinatorics, 10, 91-102.
https://doi.org/10.1016/s0195-6698(89)80037-x
[16]  Gorenstein, D. (1982) Finite Simple Groups. Plenum Press.
[17]  Liao, H.C., Li, J.J. and Lu, Z.P. (2020) On Quasiprimitive Edge-Transitive Graphs of Odd Order and Twice Prime Valency. Journal of Group Theory, 23, 1017-1037.
https://doi.org/10.1515/jgth-2019-0091
[18]  Guralnick, R.M. (1983) Subgroups of Prime Power Index in a Simple Group. Journal of Algebra, 81, 304-311.
https://doi.org/10.1016/0021-8693(83)90190-4
[19]  Li, C.H., Pan, J. and Ma, L. (2009) Locally Primitive Graphs of Prime-Power Order. Journal of the Australian Mathematical Society, 86, 111-122.
https://doi.org/10.1017/s144678870800089x
[20]  王杰. 典型群引论[M]. 北京: 北京大学出版社, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133