%0 Journal Article %T 一类几乎单型的拟本原图的刻画
The Characterization of a Class of Quasiprimitive Graphs Admitting an Almost Simple Group %A 谢柯忻 %J Pure Mathematics %P 156-161 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.153087 %X 设 Γ 是一个连通图, GAutΓ Γ G -边传递但不是 ( G,2 ) -弧传递的。在奇数阶2倍素数度图的研究基础上,本文聚焦于拟本原非2-弧传递的情况,通过研究几乎单群 G 作用在 V 上的拟本原情形,对奇素数幂阶2倍素数度非2-弧传递图展开刻画。研究发现,此类图的结构较为特殊,要么是完全图 K 7 K 11 ,要么同构于一个27阶10度图。这一结论进一步丰富了图论中关于特殊度数和传递性图的分类成果,为后续相关研究提供了重要参考。
Let Γ be a connected graph, GAutΓ , and Γ be G -edge-transitive but not ( G,2 ) -arc-transitive. Based on the research of graphs with odd order and twice prime valency, this paper focuses on the quasiprimitive %K 边传递图, %K 几乎单群, %K 拟本原, %K 自同构群
Edge-Transitive Graph %K Almost Simple Group %K Quasiprimitive %K Automorphism Group %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=109518