全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加权带有限函数空间在一致框架下的熵数
Entropy Numbers of Weighted Band-Limited Function Space in Uniform Setting

DOI: 10.12677/pm.2025.153086, PP. 144-155

Keywords: 加权带有限函数空间,熵数,一致框架,渐近阶
Weighted Band-Limited Function Space
, Entropy Numbers, Uniform Setting, Asymptotic Order

Full-Text   Cite this paper   Add to My Lib

Abstract:

熵数作为衡量函数空间复杂性的核心工具,在人工智能、控制论和科学计算等领域具有重要意义。本文基于已有研究,构建了加权带有限函数空间,采用离散化方法,探讨了加权带有限函数空间在一致框架下的熵数问题,并进一步估计出一致框架下熵数的精确渐近阶,即设 1<p,q<,r>max{ 0, 1 q 1 p },n=0,1,2, ,则 ε n ( B σ,p ω ( ), B σ,q ( ) ) n ( r 1 q + 1 p ) 。其中 B σ,p ω ( ) 是权为 ω= { | k | r } k 0 的加权带有限函数空间。
Entropy numbers, as a core tool for measuring the complexity of function spaces, play a significant role in fields such as artificial intelligence, cybernetics, and scientific computing. Based on existing research, this study

References

[1]  Nikol’skii, S.M. (2012) Approximation of Functions of Several Variables and Imbedding Theorems. Springer Science & Business Media, 205.
[2]  Gensun, F. (1996) Whittaker-Kotelnikov-Shannon Sampling Theorem and Aliasing Error. Journal of Approximation Theory, 85, 115-131.
https://doi.org/10.1006/jath.1996.0033
[3]  Li, Y., Chen, G., Xu, Y. and Pan, X. (2024) The Approximation Characteristics of Weighted Band-Limited Function Space. Mathematics, 12, Article 1348.
https://doi.org/10.3390/math12091348
[4]  Diestel, J., Jarchow, H. and Pietsch, A. (2001) Operator Ideals. Handbook of the Geometry of Banach Spaces, 1, 437-496.
https://doi.org/10.1016/s1874-5849(01)80013-9
[5]  Carl, B. and Stephani, I. (1990) Entropy, Compactness and the Approximation of Operators. Cambridge University Press.
https://doi.org/10.1017/cbo9780511897467
[6]  Lorentz, G. von Golitschek, M. and Makovoz, Y. (1996) Constructive Approximation: Advanced Problems, Volume 304, Citeseer.
[7]  Vapnik, V.N. and Chervonenkis, A.Y. (1971) On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probability & Its Applications, 16, 264-280.
https://doi.org/10.1137/1116025
[8]  Schütt, C. (1984) Entropy Numbers of Diagonal Operators between Symmetric Banach Spaces. Journal of Approximation Theory, 40, 121-128.
https://doi.org/10.1016/0021-9045(84)90021-2
[9]  Kuhn, T. (2005) Entropy Numbers of General Diagonal Operators. Revista Matemática Complutense, 18, 479-491.
https://doi.org/10.5209/rev_rema.2005.v18.n2.16697
[10]  韩永杰. 概率框架和平均框架下的熵数[D]: [硕士学位论文]. 成都: 西华大学, 2011.
[11]  王桐心. 不同框架下对角算子的熵数[D]: [硕士学位论文]. 成都: 西华大学, 2018.
[12]  Chen, J., Lu, W., Xiao, H., Wang, Y. and Tan, X. (2019) Entropy Number of Diagonal Operator. Journal of Applied Mathematics and Physics, 7, 738-745.
https://doi.org/10.4236/jamp.2019.73051
[13]  Zayed, A.I. (1994) A Sampling Theorem for Signals Bandlimited to a General Domain in Several Dimensions. Journal of Mathematical Analysis and Applications, 187, 196-211.
https://doi.org/10.1006/jmaa.1994.1352
[14]  Seip, K. (1987) An Irregular Sampling Theorem for Functions Bandlimited in a Generalized Sense. SIAM Journal on Applied Mathematics, 47, 1112-1116.
https://doi.org/10.1137/0147073
[15]  Edmunds, D.E. and Triebel, H. (1996) Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press.
https://doi.org/10.1017/cbo9780511662201
[16]  Maiorov, V. and Ratsaby, J. (1998) The Degree of Approximation of Sets in Euclidean Space Using Sets with Bounded Vapnik-Chervonenkis Dimension. Discrete Applied Mathematics, 86, 81-93.
https://doi.org/10.1016/s0166-218x(98)00015-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133