|
纳米流体在含有球形凸起的双管并排的突扩管内流动与传热特性分析
|
Abstract:
本文旨在通过分析含球凸结构的双管并排突扩管内纳米流体流动与传热特性,提升光伏系统的冷却效果,解决光伏板温度分布不均的问题。通过流变学实验制备纳米流体并测量其热导率,利用曲线拟合得出导热系数公式。将Maxwell本构方程与导热系数公式通过用户自定义函数集成至计算流体动力学求解器中,通过数值模拟展示光伏系统表面温度及管道速度、温度分布,直观呈现各参数对系统性能的影响。数据分析表明,双管异向布置能提高光伏系统热交换效率,降低光伏板表面温度不均匀性。增加流速可使光伏表面温度分布更均匀,间接增强系统总效率。缩短松弛时间能增强纳米流体适应温度变化的能力,并减小摩擦因子。
This paper aims to improve the cooling effect of the photovoltaic system and solve the problem of uneven temperature distribution of photovoltaic panels by analyzing the flow and heat transfer characteristics of nanofluids containing spherical convex structures in dual-tube sudden expansion tubes. Nanofluids are prepared via rheological experiments, and their thermal conductivity is measured. A thermal conductivity formula is derived from curve fitting. The Maxwell constitutive equation and thermal conductivity formula are integrated into a computational fluid dynamics solver using user-defined functions. Numerical simulations graphically display surface temperature, pipeline velocity, and temperature distribution, illustrating the impact of each parameter on system performance. Data analysis reveals that the double-tube anisotropic arrangement boosts heat exchange efficiency and reduces temperature unevenness on photovoltaic panels. Higher flow rates promote a more uniform temperature distribution, improving overall system efficiency. Shorter relaxation times enhance the nanofluid’s adaptability to temperature changes and reduce friction factors.
[1] | 王晓梦, 董波. 太阳能光伏电池板降温技术研究进展[J]. 煤气与热力, 2024, 44(7): 33-38. |
[2] | Hosseinzadeh, M., Salari, A., Sardarabadi, M. and Passandideh-Fard, M. (2018) Optimization and Parametric Analysis of a Nanofluid Based Photovoltaic Thermal System: 3D Numerical Model with Experimental Validation. Energy Conversion and Management, 160, 93-108. https://doi.org/10.1016/j.enconman.2018.01.006 |
[3] | Fu, Z., Li, Y., Liang, X., Lou, S., Qiu, Z., Cheng, Z., et al. (2021) Experimental Investigation on the Enhanced Performance of a Solar PVT System Using Micro-Encapsulated PCMs. Energy, 228, Article ID: 120509. https://doi.org/10.1016/j.energy.2021.120509 |
[4] | Kazemian, A., Ma, T. and Hongxing, Y. (2024) Evaluation of Various Collector Configurations for a Photovoltaic Thermal System to Achieve High Performance, Low Cost, and Lightweight. Applied Energy, 357, Article ID: 122422. https://doi.org/10.1016/j.apenergy.2023.122422 |
[5] | Gürsoy, E., Kadir Pazarlıoğlu, H., Dağdeviren, A., Gürdal, M., Gedik, E., Arslan, K., et al. (2022) Energy Analysis of Magnetite Nanofluid Flowing in Newly Designed Sudden Expansion Tube Retrofitted with Dimpled Fin. International Journal of Heat and Mass Transfer, 199, Article ID: 123446. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123446 |
[6] | Gupta, S.K. and Kukreja, N. (2020) CFD Analysis of Flow over Backward Facing Step at Different Inclination Angle. International Journal of Advanced Science and Technology, 29, 4696-4701. |
[7] | Xie, S., Liang, Z., Zhang, J., Zhang, L., Wang, Y. and Ding, H. (2019) Numerical Investigation on Flow and Heat Transfer in Dimpled Tube with Teardrop Dimples. International Journal of Heat and Mass Transfer, 131, 713-723. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.112 |
[8] | Yao, Y., Ding, J., Zhang, Y., Wang, W. and Lu, J. (2022) Heat Transfer Performance of Pillow Plate Heat Exchanger with Molten Salt and Supercritical Carbon Dioxide. International Journal of Heat and Mass Transfer, 183, Article ID: 122211. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122211 |
[9] | Gürdal, M., Pazarlıoğlu, H.K., Tekir, M., Arslan, K., Gedik, E. and Taşkesen, E. (2022) Experimental Investigation on Thermo Hydraulic Performance of Ferronanofluid Flow in a Dimpled Tube under Magnetic Field Effect. Experimental Heat Transfer, 36, 312-330. https://doi.org/10.1080/08916152.2022.2027575 |
[10] | Ali, S., Kalita, P., Bora, B.J., Deka, M.J., Kalita, P. and Dutta, P.P. (2024) Two Novel Dual-Tube Photovoltaic-Thermal Collector Designs with Improved Performance for Liquid-Cooled Photovoltaic-Thermal Systems. Renewable Energy, 232, Article ID: 121062. https://doi.org/10.1016/j.renene.2024.121062 |
[11] | 刘佳杰. 粘弹性流体在弹性圆管内的流动动态响应研究[D]: [硕士学位论文]. 济南: 山东大学, 2023. |
[12] | 沈洋, 王企鲲, 刘唐京. 两种典型粘弹性流体——Giesekus流体与FENE-P流体的流变特性[J]. 建模与仿真, 2023, 12(5): 4559-4569. |
[13] | 郑智颖. FLUENT在粘弹性流体流动数值模拟中的应用[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013. |
[14] | 李彦军, 金正浩, 李舒宏. 纳米TiO2对NH3-H2O-LiBr工质降膜吸收性能的影响[J]. 制冷技术, 2024, 44(1): 16-23. |
[15] | Qiao, Y., Yang, X., Xu, H. and Qi, H. (2024) Numerical Analysis of Two-Dimensional MHD Flow and Heat Transfer of Generalized Maxwell Fluid through a Rectangular Pipe. International Journal of Heat and Fluid Flow, 106, Article ID: 109303. https://doi.org/10.1016/j.ijheatfluidflow.2024.109303 |
[16] | Khelifa, A., El Hadi Attia, M., Driss, Z. and Muthu Manokar, A. (2023) Performance Enhancement of Photovoltaic Solar Collector Using Fins and Bi-Fluid: Thermal Efficiency Study. Solar Energy, 263, Article ID: 111987. https://doi.org/10.1016/j.solener.2023.111987 |
[17] | Mohd Rosli, M.A., Wai Loon, Y., Nawam, M.Z., Misha, S., Roslizar, A., Hussain, F., et al. (2021) Validation Study of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach. CFD Letters, 13, 58-71. https://doi.org/10.37934/cfdl.13.3.5871 |