%0 Journal Article
%T 纳米流体在含有球形凸起的双管并排的突扩管内流动与传热特性分析
Investigation of Flow and Heat Transfer Properties of Nanofluids in Dual-Tube Sudden Expansions Tubes with Spherical Protrusions
%A 符根硕
%A 刘春燕
%A 王雨梦
%A 宋志德
%J International Journal of Fluid Dynamics
%P 37-49
%@ 2328-0549
%D 2025
%I Hans Publishing
%R 10.12677/ijfd.2025.131004
%X 本文旨在通过分析含球凸结构的双管并排突扩管内纳米流体流动与传热特性,提升光伏系统的冷却效果,解决光伏板温度分布不均的问题。通过流变学实验制备纳米流体并测量其热导率,利用曲线拟合得出导热系数公式。将Maxwell本构方程与导热系数公式通过用户自定义函数集成至计算流体动力学求解器中,通过数值模拟展示光伏系统表面温度及管道速度、温度分布,直观呈现各参数对系统性能的影响。数据分析表明,双管异向布置能提高光伏系统热交换效率,降低光伏板表面温度不均匀性。增加流速可使光伏表面温度分布更均匀,间接增强系统总效率。缩短松弛时间能增强纳米流体适应温度变化的能力,并减小摩擦因子。
This paper aims to improve the cooling effect of the photovoltaic system and solve the problem of uneven temperature distribution of photovoltaic panels by analyzing the flow and heat transfer characteristics of nanofluids containing spherical convex structures in dual-tube sudden expansion tubes. Nanofluids are prepared via rheological experiments, and their thermal conductivity is measured. A thermal conductivity formula is derived from curve fitting. The Maxwell constitutive equation and thermal conductivity formula are integrated into a computational fluid dynamics solver using user-defined functions. Numerical simulations graphically display surface temperature, pipeline velocity, and temperature distribution, illustrating the impact of each parameter on system performance. Data analysis reveals that the double-tube anisotropic arrangement boosts heat exchange efficiency and reduces temperature unevenness on photovoltaic panels. Higher flow rates promote a more uniform temperature distribution, improving overall system efficiency. Shorter relaxation times enhance the nanofluid’s adaptability to temperature changes and reduce friction factors.
%K Maxwell本构方程,
%K 冷却效果,
%K 球凸结构,
%K 双管并排突扩管,
%K 光伏系统
Maxwell Constitutive Equation
%K Cooling Effect
%K Spherical Convex Structures
%K Dual-Tube Sudden Expansion Tubes
%K Photovoltaic System
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=109236