全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于COMSOL仿真模拟的毛细钉扎效应在微流控肺芯片中的应用研究
Application Study of Capillary Pinning Effect in Microfluidic Lung Microarrays Based on COMSOL Simulation Modeling

DOI: 10.12677/mos.2025.143201, PP. 43-51

Keywords: COMSOL仿真,毛细钉扎效应,微流控肺芯片,接触角
COMSOL Simulation
, Capillary Pinning Effect, Microfluidic Lung Chip, Contact Angle

Full-Text   Cite this paper   Add to My Lib

Abstract:

微流控肺芯片作为一种模拟肺部生理和病理过程的重要工具,对疾病模型研究和药物筛选具有重要意义。本文基于COMSOL仿真,研究了毛细钉扎效应在微流控肺芯片中的应用,探索了水凝胶与紧密间隔的微柱结构之间强表面张力驱动下的图案化过程。通过改变水凝胶表面接触角,本文模拟了不同条件下液体抽吸过程中的毛细作用,并分析了表面张力与接触角对水凝胶层图案形成的影响。仿真结果表明,水凝胶与微柱结构之间的表面张力差异是驱动图案化过程的关键因素,接触角的变化直接影响到液体在微柱阵列中的分布和水凝胶膜的形态。通过优化接触角和水凝胶的物理特性,可以实现精确控制水凝胶层的形态和厚度,进而在微流控肺芯片中成功形成所需的基质图案。本文的研究为微流控芯片的设计与优化提供了重要的理论依据,并为未来的肺部疾病模型和细胞培养平台的构建提供了新的思路。
Microfluidic lung chips, as critical tools for simulating pulmonary physiological and pathological processes, play a vital role in disease modeling and drug screening. This study, based on COMSOL simulations, investigates the application of the capillary pinning effect in microfluidic lung chips, exploring the patterning process driven by strong surface tension between hydrogel and closely spaced micropillar structures. By altering the surface contact angle of the hydrogel, the study simulates the capillary action during liquid suction under various conditions and analyzes the impact of surface tension and contact angle on the formation of the matrix gel layer pattern. The simulation results indicate that the surface tension differences between the hydrogel and micropillar structures are key factors driving the patterning process. Changes in the contact angle directly influence the distribution of liquid within the micropillar array and the morphology of the matrix gel film. By optimizing the contact angle and physical properties of the hydrogel, precise control over the morphology and thickness of the matrix gel layer can be achieved, enabling the successful formation of the desired matrix pattern in the microfluidic lung chip. This research provides significant theoretical insights for the design and optimization of microfluidic chips and offers new approaches for constructing lung disease models and cell culture platforms in the future.

References

[1]  曹涵博, 魏巍, 李骁, 等. 器官芯片在药物研发中的应用现状[J]. 中国药业, 2025, 34(1): 1-7.
[2]  高羡明, 楚亚龙, 朱朝飞, 等. 液体毛细力驱动的微纳组装技术的研究进展[J]. 微纳电子技术, 2023, 60(10): 1551-1563.
[3]  杨慧明, 沈冲, 孟琴. 面向微流控肺芯片的水凝胶薄膜制备及其性能研究[J]. 高校化学工程学报, 2022, 36(6): 886-893.
[4]  廖无瑕, 史成勇, 郭勇. 微通道中的毛细力驱动流研究[J]. 中小企业管理与科技(中旬刊), 2021(4): 178-179.
[5]  Gogolides, E., Ellinas, K. and Tserepi, A. (2015) Hierarchical Micro and Nano Structured, Hydrophilic, Superhydrophobic and Superoleophobic Surfaces Incorporated in Microfluidics, Microarrays and Lab on Chip Microsystems. Microelectronic Engineering, 132, 135-155.
https://doi.org/10.1016/j.mee.2014.10.002
[6]  Benam, K.H., Villenave, R., Lucchesi, C., Varone, A., Hubeau, C., Lee, H., et al. (2015) Small Airway-on-a-Chip Enables Analysis of Human Lung Inflammation and Drug Responses in Vitro. Nature Methods, 13, 151-157.
https://doi.org/10.1038/nmeth.3697
[7]  Olanrewaju, A., Beaugrand, M., Yafia, M. and Juncker, D. (2018) Capillary Microfluidics in Microchannels: From Microfluidic Networks to Capillaric Circuits. Lab on a Chip, 18, 2323-2347.
https://doi.org/10.1039/c8lc00458g
[8]  Berthier, J., Loe-Mie, F., Tran, V., Schoumacker, S., Mittler, F., Marchand, G., et al. (2009) On the Pinning of Interfaces on Micropillar Edges. Journal of Colloid and Interface Science, 338, 296-303.
https://doi.org/10.1016/j.jcis.2009.06.007
[9]  Lee, U.N., Berthier, J., Yu, J., Berthier, E. and Theberge, A.B. (2019) Stable Biphasic Interfaces for Open Microfluidic Platforms. Biomedical Microdevices, 21, Article No. 16.
https://doi.org/10.1007/s10544-019-0367-z
[10]  Park, D., Kang, M., Choi, J.W., Paik, S., Ko, J., Lee, S., et al. (2018) Microstructure Guided Multi-Scale Liquid Patterning on an Open Surface. Lab on a Chip, 18, 2013-2022.
https://doi.org/10.1039/c7lc01288h
[11]  Nguyen, T.T.Y., Lee, J., Choi, S. and Jeon, N.L. (2024) Surface Tension-Based Open Microfluidic Platform Using Micropillars to Recreate the 3D Lung Cellular Microenvironment. BioChip Journal, 18, 589-600.
https://doi.org/10.1007/s13206-024-00171-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133