%0 Journal Article %T 基于COMSOL仿真模拟的毛细钉扎效应在微流控肺芯片中的应用研究
Application Study of Capillary Pinning Effect in Microfluidic Lung Microarrays Based on COMSOL Simulation Modeling %A 周恋晨 %A 郑璐璐 %J Modeling and Simulation %P 43-51 %@ 2324-870X %D 2025 %I Hans Publishing %R 10.12677/mos.2025.143201 %X 微流控肺芯片作为一种模拟肺部生理和病理过程的重要工具,对疾病模型研究和药物筛选具有重要意义。本文基于COMSOL仿真,研究了毛细钉扎效应在微流控肺芯片中的应用,探索了水凝胶与紧密间隔的微柱结构之间强表面张力驱动下的图案化过程。通过改变水凝胶表面接触角,本文模拟了不同条件下液体抽吸过程中的毛细作用,并分析了表面张力与接触角对水凝胶层图案形成的影响。仿真结果表明,水凝胶与微柱结构之间的表面张力差异是驱动图案化过程的关键因素,接触角的变化直接影响到液体在微柱阵列中的分布和水凝胶膜的形态。通过优化接触角和水凝胶的物理特性,可以实现精确控制水凝胶层的形态和厚度,进而在微流控肺芯片中成功形成所需的基质图案。本文的研究为微流控芯片的设计与优化提供了重要的理论依据,并为未来的肺部疾病模型和细胞培养平台的构建提供了新的思路。
Microfluidic lung chips, as critical tools for simulating pulmonary physiological and pathological processes, play a vital role in disease modeling and drug screening. This study, based on COMSOL simulations, investigates the application of the capillary pinning effect in microfluidic lung chips, exploring the patterning process driven by strong surface tension between hydrogel and closely spaced micropillar structures. By altering the surface contact angle of the hydrogel, the study simulates the capillary action during liquid suction under various conditions and analyzes the impact of surface tension and contact angle on the formation of the matrix gel layer pattern. The simulation results indicate that the surface tension differences between the hydrogel and micropillar structures are key factors driving the patterning process. Changes in the contact angle directly influence the distribution of liquid within the micropillar array and the morphology of the matrix gel film. By optimizing the contact angle and physical properties of the hydrogel, precise control over the morphology and thickness of the matrix gel layer can be achieved, enabling the successful formation of the desired matrix pattern in the microfluidic lung chip. This research provides significant theoretical insights for the design and optimization of microfluidic chips and offers new approaches for constructing lung disease models and cell culture platforms in the future. %K COMSOL仿真, %K 毛细钉扎效应, %K 微流控肺芯片, %K 接触角
COMSOL Simulation %K Capillary Pinning Effect %K Microfluidic Lung Chip %K Contact Angle %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=108940