|
生物活性材料修饰的聚醚醚酮在口腔种植领域的潜在应用
|
Abstract:
口腔种植作为牙列缺损的重要修复方法之一,目前在临床上得到广泛应用,种植材料的优化对于种植成功具有重要意义。聚醚醚酮(polyetheretherketone, PEEK)是聚芳醚酮家族中的一种半结晶形态热塑性聚合物,相比于传统的口腔种植材料,PEEK具有与骨组织相近的弹性模量、化学稳定性和射线可透性等一系列优异的性能,能够避免金属腐蚀以及应力遮挡效应导致的骨吸收。然而,PEEK表面的生物惰性可能会导致骨结合不良以及感染等问题,不利于其在口腔种植领域的应用。因此,PEEK的表面改性日益成为研究的热点之一。研究人员探索了多种生物活性材料的改性方法,以有效增强PEEK及其复合材料的成骨和抗菌性。因此,本文主要综述了近年来生物活性材料改性后的PEEK的研究进展,对PEEK的成骨及抗菌策略进行了分析,并对改性后的PEEK在口腔种植领域的应用进行了展望。
As one of the important repair methods for dentition defects, oral implant is widely used in clinic. The optimization of implant materials is of great significance to the success of implants. Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer in the polyaryletherketone family. Compared with traditional oral implant materials, PEEK has a series of excellent properties such as elastic modulus, chemical stability and ray permeability similar to bone tissue, which can avoid metal corrosion and bone resorption caused by stress shielding effect. However, the biological inertia of PEEK surface may lead to problems such as poor osseointegration and infection, which is not conducive to its application in the field of oral implantology. Therefore, the surface modification of PEEK has increasingly become one of the research hotspots. Researchers have explored a variety of modification methods of bioactive materials to effectively enhance the osteogenic and antibacterial properties of PEEK and its composites. Therefore, this paper mainly reviews the research progress of PEEK modified by bioactive materials in recent years, analyzes the osteogenesis and antibacterial strategies of PEEK, and looks forward to the application of modified PEEK in the field of oral implantology.
[1] | Kauke-Navarro, M., Knoedler, L., Knoedler, S., Deniz, C., Stucki, L. and Safi, A.-F. (2024) Balancing Beauty and Science: A Review of Facial Implant Materials in Craniofacial Surgery. Frontiers in Surgery, 11, Article 1348140. https://doi.org/10.3389/fsurg.2024.1348140 |
[2] | 吕迪, 陈美玲. 聚醚醚酮在口腔种植领域的应用与表面功能化研究进展[J]. 临床口腔医学杂志, 2024, 40(4): 251-254. |
[3] | Zheng, Z., Liu, P.J., Zhang, X.M., et al. (2022) Strategies to Improve Bioactive and Antibacterial Properties of Polyetheretherketone (PEEK) for Use as Orthopedic Implants. Materials Today Bio, 16, Article ID: 100402. https://doi.org/10.1016/j.mtbio.2022.100402 |
[4] | Zhang, W., Wang, N., Yang, M., et al. (2022) Periosteum and Development of the Tissue-Engineered Periosteum for Guided Bone Regeneration. Journal of Orthopaedic Translation, 33, 41-54. https://doi.org/10.1016/j.jot.2022.01.002 |
[5] | Pidhatika, B., Widyaya, V.T., Nalam, P.C., Swasono, Y.A. and Ardhani, R. (2022) Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers, 14, Article 5526. https://doi.org/10.3390/polym14245526 |
[6] | Zhang, D., Xu, X., Long, X., Cheng, K. and Li, J.S. (2019) Advances in Biomolecule Inspired Polymeric Material Decorated Interfaces for Biological Applications. Biomaterials Science, 7, 3984-3999. https://doi.org/10.1039/C9BM00746F |
[7] | Lai, M., Cai, K., Zhao, L., Chen, X.Y., Hou, Y.H. and Yang, Z.X. (2011) Surface Functionalization of TiO2 Nanotubes with Bone Morphogenetic Protein 2 and Its Synergistic Effect on the Differentiation of Mesenchymal Stem Cells. Biomacromolecules, 12, 1097-105. https://doi.org/10.1021/bm1014365 |
[8] | Gonzaga, M.G., Dos Santos Kotake, B.G., de Figueiredo, F.A.T., et al. (2019) Effectiveness of rhBMP-2 Association to Autogenous, Allogeneic, and Heterologous Bone Grafts. Microscopy Research and Technique, 82, 689-695. https://doi.org/10.1002/jemt.23215 |
[9] | Schmidt-Bleek, K., Willie, B.M., Schwabe, P., Seemann, P. and Duda, G.N. (2016) BMPs in Bone Regeneration: Less Is More Effective, a Paradigm-Shift. Cytokine & Growth Factor Reviews, 27, 141-148. https://doi.org/10.1016/j.cytogfr.2015.11.006 |
[10] | Senatov, F., Maksimkin, A., Chubrik, A., et al. (2021) Osseointegration Evaluation of UHMWPE and PEEK-Based Scaffolds with BMP-2 Using Model of Critical-Size Cranial Defect in Mice and Push-Out Test. Journal of the Mechanical Behavior of Biomedical Materials, 119, Article ID: 104477. https://doi.org/10.1016/j.jmbbm.2021.104477 |
[11] | Buck, E., Li, H. and Cerruti, M. (2020) Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromolecular Bioscience, 20, e1900271. https://doi.org/10.1002/mabi.201900271 |
[12] | Zhang, R., Jo, J.I., Kanda, R., Nishiura, A., Hashimoto, Y. and Matsumoto, N. (2023) Bioactive Polyetheretherketone with Gelatin Hydrogel Leads to Sustained Release of Bone Morphogenetic Protein-2 and Promotes Osteogenic Differentiation. International Journal of Molecular Sciences, 24, Article 12741. https://doi.org/10.3390/ijms241612741 |
[13] | Wan, T., Li, L., Guo, M., et al. (2019) Immobilization via Polydopamine of Dual Growth Factors on Polyetheretherketone: Improvement of Cell Adhesion, Proliferation, and Osteo-Differentiation. Journal of Materials Science, 54, 11179-11196. https://doi.org/10.1007/s10853-018-03264-z |
[14] | Safari, B., Davaran, S. and Aghanejad, A. (2021) Osteogenic Potential of the Growth Factors and Bioactive Molecules in Bone Regeneration. International Journal of Biological Macromolecules, 175, 544-557. https://doi.org/10.1016/j.ijbiomac.2021.02.052 |
[15] | Chubrik, A., Senatov, F., Kolesnikov, E., et al. (2020) Highly Porous PEEK and PEEK/HA Scaffolds with Escherichia Coli-Derived Recombinant BMP-2 and Erythropoietin for Enhanced Osteogenesis and Angiogenesis. Polymer Testing, 87, Article 106518. https://doi.org/10.1016/j.polymertesting.2020.106518 |
[16] | Goh, M., Min, K., Kim, Y.H., et al. (2024) Chemically Heparinized PEEK via a Green Method to Immobilize Bone Morphogenetic Protein-2 (BMP-2) for Enhanced Osteogenic Activity. RSC Advances, 14, 1866-1874. https://doi.org/10.1039/D3RA07660A |
[17] | Zhan, Z., Li, R., Wu, Y., et al. (2025) Biomimetic Periosteum-Bone Scaffolds with Codelivery of BMP-2 and PDGF-BB for Skull Repair. Bone, 190, Article ID: 117315. https://doi.org/10.1016/j.bone.2024.117315 |
[18] | Yuan, Z., Lyu, Z., Zhang, W., Zhang, J. and Wang, Y. (2022) Porous Bioactive Prosthesis with Chitosan/Mesoporous Silica Nanoparticles Microspheres Sequentially and Sustainedly Releasing Platelet-Derived Growth Factor-BB and Kartogenin: A New Treatment Strategy for Osteoarticular Lesions. Frontiers in Bioengineering and Biotechnology, 10, Article 839120. https://doi.org/10.3389/fbioe.2022.839120 |
[19] | Koushik, T.M., Miller, C.M. and Antunes, E. (2023) Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 12, e2202766. https://doi.org/10.1002/adhm.202202766 |
[20] | Patrawalla, N.Y., Kajave, N.S., Albanna, M.Z., et al. (2023) Collagen and Beyond: A Comprehensive Comparison of Human ECM Properties Derived from Various Tissue Sources for Regenerative Medicine Applications. Journal of Functional Biomaterials, 14, Article 363. https://doi.org/10.3390/jfb14070363 |
[21] | Kim, H., Lee, Y.H., Kim, N.K. and Kang, I.K. (2022) Immobilization of Collagen on the Surface of a PEEK Implant with Monolayer Nanopores. Polymers, 14, Article 1633. https://doi.org/10.3390/polym14091633 |
[22] | Arisaka, Y., Masuda, H., Yoda, T. and Yui, N. (2022) Phototethering of Collagen onto Polyetheretherketone Surfaces to Enhance Osteoblastic and Endothelial Performance. Macromolecular Bioscience, 22, e2200115. https://doi.org/10.1002/mabi.202200115 |
[23] | Förster, Y., Bernhardt, R., Hintze, V., et al. (2017) Collagen/Glycosaminoglycan Coatings Enhance New Bone Formation in a Critical Size Bone Defect—A Pilot Study in Rats. Materials Science and Engineering: C, 71, 84-92. https://doi.org/10.1016/j.msec.2016.09.071 |
[24] | Sodhi, H. and Panitch, A. (2021) Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules, 11, Article 29. https://doi.org/10.3390/biom11010029 |
[25] | Li, M., Liu, J., Li, Y., et al. (2024) Enhanced Osteogenesis and Antibacterial Activity of Dual-Functional PEEK Implants via Biomimetic Polydopamine Modification with Chondroitin Sulfate and Levofloxacin. Journal of Biomaterials Science, Polymer Edition, 35, 2790-2806. https://doi.org/10.1080/09205063.2024.2390745 |
[26] | Xu, L., Li, M., Ma, F., et al. (2024) Surface Bioactivation of Polyetheretherketone (PEEK) by Magnesium Chondroitin Sulfate (MgCS) as Orthopedic Implants for Reconstruction of Skeletal Defects. International Journal of Biological Macromolecules, 274, Article 133435. https://doi.org/10.1016/j.ijbiomac.2024.133435 |
[27] | Luo, Y., Tan, J., Zhou, Y., et al. (2023) From Crosslinking Strategies to Biomedical Applications of Hyaluronic Acid-Based Hydrogels: A Review. International Journal of Biological Macromolecules, 231, Article ID: 123308. https://doi.org/10.1016/j.ijbiomac.2023.123308 |
[28] | Aso Abdulghafor, M. and Mustafa Amin, Z. (2024) The Impact of Hyaluronic Acid Coating on Polyether Ether Ketone Dental Implant Surface: An in Vitro Analysis. The Saudi Dental Journal, 36, 1326-1332. https://doi.org/10.1016/j.sdentj.2024.07.012 |
[29] | An, J., Shi, X., Zhang, J., et al. (2023) Dual Aldehyde Cross-Linked Hyaluronic Acid Hydrogels Loaded with PRP and NGF Biofunctionalized PEEK Interfaces to Enhance Osteogenesis and Vascularization. Materials Today Bio, 24, Article ID: 100928. https://doi.org/10.1016/j.mtbio.2023.100928 |
[30] | Al Musaimi, O., Lombardi, L., Williams, D.R. and Albericio, F. (2022) Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals, 15, Article 1283. https://doi.org/10.3390/ph15101283 |
[31] | Liu, F., Wang, Y., Qu, X.F., Lin, L. and Guang, H. (2022) Repair of Alveolar Bone Defects with Osteogenic Polypeptide Modified HA_CF_PEEK Dental Implants. Science of Advanced Materials, 14, 1539-1549. https://doi.org/10.1166/sam.2022.4353 |
[32] | Cassari, L., Zamuner, A., Messina, G.M.L., et al. (2023) Bioactive PEEK: Surface Enrichment of Vitronectin-Derived Adhesive Peptides. Biomolecules, 13, Article 246. https://doi.org/10.3390/biom13020246 |
[33] | Cassari, L., Zamuner, A., Messina, G.M.L., et al. (2023) Strategies for the Covalent Anchoring of a BMP-2-Mimetic Peptide to PEEK Surface for Bone Tissue Engineering. Materials, 16, Article 3869. https://doi.org/10.3390/ma16103869 |
[34] | Yang, H., Ding, H., Tian, Y., et al. (2024) Metal Element-Fusion Peptide Heterostructured Nanocoatings Endow Polyetheretherketone Implants with Robust Anti-Bacterial Activities and in Vivo Osseointegration. Nanoscale, 16, 12934-12946. https://doi.org/10.1039/D4NR01453G |
[35] | Ahmad, F., Nimonkar, S., Belkhode, V. and Nimonkar, P. (2024) Role of Polyetheretherketone in Prosthodontics: A Literature Review. Cureus, 16, e60552. https://doi.org/10.7759/cureus.60552 |
[36] | Chen, J., Zhu, D., Zhao, M., et al. (2024) Three-Dimensional Finite Element Analysis of the Optimal Mechanical Design for Maximum Inward Movement of the Anterior Teeth with Clear Aligners. Scientific Reports, 14, Article No. 13203. https://doi.org/10.1038/s41598-024-63907-x |