|
Pure Mathematics 2025
具有无理压缩比的卷积测度的非谱性研究
|
Abstract:
设 是由以下离散测度的无限卷积定义的Borel概率测度: 其中 , 是一有限集, 是一个严格递增的正整数序列,且 。本文证明了:若
[1] | Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group Theoretic Problem. Journal of Functional Analysis, 16, 101-121. https://doi.org/10.1016/0022-1236(74)90072-x |
[2] | Tao, T. (2004) Fuglede’s Conjecture Is False in 5 and Higher Dimensions. Mathematical Research Letters, 11, 251-258. https://doi.org/10.4310/mrl.2004.v11.n2.a8 |
[3] | Farkas, B., Matolcsi, M. and Mora, P. (2006) On Fuglede’s Conjecture and the Existence of Universal Spectra. Journal of Fourier Analysis and Applications, 12, 483-494. https://doi.org/10.1007/s00041-005-5069-7 |
[4] | Kolountzakis, M.N. and Matolcsi, M. (2006) Tiles with No Spectra. Forum Mathematicum, 18, 519-528. https://doi.org/10.1515/forum.2006.026 |
[5] | Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractall 2-Spaces. Journal d’Analyse Mathématique, 75, 185-228. https://doi.org/10.1007/bf02788699 |
[6] | Dai, X., He, X. and Lau, K. (2014) On Spectral N-Bernoulli Measures. Advances in Mathematics, 259, 511-531. https://doi.org/10.1016/j.aim.2014.03.026 |
[7] | Terras, A. (1985) Harmonic Analysis on Symmetric Spaces and Applications I. Springer-Verlag. |
[8] | Łaba, I. and Wang, Y. (2002) On Spectral Cantor Measures. Journal of Functional Analysis, 193, 409-420. https://doi.org/10.1006/jfan.2001.3941 |
[9] | Strichartz, R.S. (2006) Convergence of Mock Fourier Series. Journal d’Analyse Mathématique, 99, 333-353. https://doi.org/10.1007/bf02789451 |
[10] | Dutkay, D., Haussermann, J. and Lai, C. (2018) Hadamard Triples Generate Self-Affine Spectral Measures. Transactions of the American Mathematical Society, 371, 1439-1481. https://doi.org/10.1090/tran/7325 |
[11] | An, L., Fu, X. and Lai, C. (2019) On Spectral Cantor-Moran Measures and a Variant of Bourgain’s Sum of Sine Problem. Advances in Mathematics, 349, 84-124. https://doi.org/10.1016/j.aim.2019.04.014 |
[12] | An, L., He, L. and He, X. (2019) Spectrality and Non-Spectrality of the Riesz Product Measures with Three Elements in Digit Sets. Journal of Functional Analysis, 277, 255-278. https://doi.org/10.1016/j.jfa.2018.10.017 |
[13] | An, L. and Lai, C. (2023) Product-Form Hadamard Triples and Its Spectral Self-Similar Measures. Advances in Mathematics, 431, Article 109257. https://doi.org/10.1016/j.aim.2023.109257 |
[14] | Deng, Q. and Chen, J. (2021) Uniformity of Spectral Self-Affine Measures. Advances in Mathematics, 380, Article 107568. https://doi.org/10.1016/j.aim.2021.107568 |
[15] | An, L.-X., Li, Q. and Zhang, M.-M. (2022) Characterization of Spectral Cantor-Moran Measures with Consecutive Digits. SSRN Journal. https://xs.gupiaoq.com/scholar?hl=en&q=Characterization+of+spectral+Cantor-Moran+measures+with+consecutive+digits |
[16] | An, L. and Wang, C. (2021) On Self-Similar Spectral Measures. Journal of Functional Analysis, 280, Article 108821. https://doi.org/10.1016/j.jfa.2020.108821 |
[17] | Dai, X., He, X. and Lai, C. (2013) Spectral Property of Cantor Measures with Consecutive Digits. Advances in Mathematics, 242, 187-208. https://doi.org/10.1016/j.aim.2013.04.016 |