全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有无理压缩比的卷积测度的非谱性研究
A Study of Non-Spectrality of Convolutional Measures with Irrational Contraction Ratio

DOI: 10.12677/pm.2025.153077, PP. 63-70

Keywords: 测度,卷积,非谱性,傅里叶变换
Measure
, Convolution, Non-Spectrality, Fourier Transform

Full-Text   Cite this paper   Add to My Lib

Abstract:

μ ρ,D,{ n k } 是由以下离散测度的无限卷积定义的Borel概率测度: μ ρ,D,{ n k } = δ ρ n 1 D δ ρ n 2 D δ ρ n 3 D , 其中 0<ρ<1 D 是一有限集, { n k } k=1 是一个严格递增的正整数序列,且 sup k1 { n k+1 n k }< 。本文证明了:若

References

[1]  Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group Theoretic Problem. Journal of Functional Analysis, 16, 101-121.
https://doi.org/10.1016/0022-1236(74)90072-x
[2]  Tao, T. (2004) Fuglede’s Conjecture Is False in 5 and Higher Dimensions. Mathematical Research Letters, 11, 251-258.
https://doi.org/10.4310/mrl.2004.v11.n2.a8
[3]  Farkas, B., Matolcsi, M. and Mora, P. (2006) On Fuglede’s Conjecture and the Existence of Universal Spectra. Journal of Fourier Analysis and Applications, 12, 483-494.
https://doi.org/10.1007/s00041-005-5069-7
[4]  Kolountzakis, M.N. and Matolcsi, M. (2006) Tiles with No Spectra. Forum Mathematicum, 18, 519-528.
https://doi.org/10.1515/forum.2006.026
[5]  Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractall 2-Spaces. Journal dAnalyse Mathématique, 75, 185-228.
https://doi.org/10.1007/bf02788699
[6]  Dai, X., He, X. and Lau, K. (2014) On Spectral N-Bernoulli Measures. Advances in Mathematics, 259, 511-531.
https://doi.org/10.1016/j.aim.2014.03.026
[7]  Terras, A. (1985) Harmonic Analysis on Symmetric Spaces and Applications I. Springer-Verlag.
[8]  Łaba, I. and Wang, Y. (2002) On Spectral Cantor Measures. Journal of Functional Analysis, 193, 409-420.
https://doi.org/10.1006/jfan.2001.3941
[9]  Strichartz, R.S. (2006) Convergence of Mock Fourier Series. Journal d’Analyse Mathématique, 99, 333-353.
https://doi.org/10.1007/bf02789451
[10]  Dutkay, D., Haussermann, J. and Lai, C. (2018) Hadamard Triples Generate Self-Affine Spectral Measures. Transactions of the American Mathematical Society, 371, 1439-1481.
https://doi.org/10.1090/tran/7325
[11]  An, L., Fu, X. and Lai, C. (2019) On Spectral Cantor-Moran Measures and a Variant of Bourgain’s Sum of Sine Problem. Advances in Mathematics, 349, 84-124.
https://doi.org/10.1016/j.aim.2019.04.014
[12]  An, L., He, L. and He, X. (2019) Spectrality and Non-Spectrality of the Riesz Product Measures with Three Elements in Digit Sets. Journal of Functional Analysis, 277, 255-278.
https://doi.org/10.1016/j.jfa.2018.10.017
[13]  An, L. and Lai, C. (2023) Product-Form Hadamard Triples and Its Spectral Self-Similar Measures. Advances in Mathematics, 431, Article 109257.
https://doi.org/10.1016/j.aim.2023.109257
[14]  Deng, Q. and Chen, J. (2021) Uniformity of Spectral Self-Affine Measures. Advances in Mathematics, 380, Article 107568.
https://doi.org/10.1016/j.aim.2021.107568
[15]  An, L.-X., Li, Q. and Zhang, M.-M. (2022) Characterization of Spectral Cantor-Moran Measures with Consecutive Digits. SSRN Journal.
https://xs.gupiaoq.com/scholar?hl=en&q=Characterization+of+spectral+Cantor-Moran+measures+with+consecutive+digits
[16]  An, L. and Wang, C. (2021) On Self-Similar Spectral Measures. Journal of Functional Analysis, 280, Article 108821.
https://doi.org/10.1016/j.jfa.2020.108821
[17]  Dai, X., He, X. and Lai, C. (2013) Spectral Property of Cantor Measures with Consecutive Digits. Advances in Mathematics, 242, 187-208.
https://doi.org/10.1016/j.aim.2013.04.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133