|
手性琥珀酸脱氢酶抑制剂类农药的活性与毒性研究
|
Abstract:
近年来,琥珀酸脱氢酶抑制剂类杀菌剂因其强大的药效和对植物持久的保护力,以及显著的增产效果而备受农业界的广泛关注。然而随着仪器技术的不断进步,人们对手性农药的研究从传统的消旋体层面深入到更为精细的对映体层面,在此背景下,手性农药的立体选择性行为不容忽视。本文以手性琥珀酸脱氢酶抑制剂类农药为研究对象,从对映体水平开展了关于手性琥珀酸脱氢酶抑制剂类农药的生物活性以及对非靶标生物体毒性差异的综述,并归纳了琥珀酸脱氢酶抑制剂的作用机制,重点阐述了此类手性农药对映体生物活性与毒性的立体选择性差异,旨在为开发更安全、更高效的手性农药提供参考。
In recent years, succinate dehydrogenase inhibitor fungicides have attracted extensive attention in the agricultural field due to their powerful efficacy, long-lasting protective effect on plants, and significant yield-increasing effects. However, with the continuous advancement of instrumental technology, research on chiral pesticides has shifted from the traditional racemic level to a more refined enantiomer level. Against this backdrop, the stereoselective behavior of chiral pesticides cannot be ignored. This article takes chiral succinate dehydrogenase inhibitor pesticides as the research object and conducts a review on the biological activity and toxicity differences to non-target organisms of chiral succinate dehydrogenase inhibitor pesticides at the enantiomer level. It also summarizes the mechanism of action of succinate dehydrogenase inhibitor and focuses on elaborating the stereoselective differences in the biological activity and toxicity of enantiomers of such chiral pesticides, aiming to provide a reference for the development of safer and more efficient chiral pesticides.
[1] | 姜芮. 我国儿童药物临床试验现状分析与优化策略研究[D]: [硕士学位论文]. 南京: 南京中医药大学, 2024. |
[2] | 章伟光, 张仕林, 郭栋, 赵檑, 于腊佳, 章慧, 何裕建. 关注手性药物: 从“反应停事件”说起[J]. 大学化学, 2019, 34(9): 1-12. |
[3] | 梁瑞雪. 手性多亚胺大环和手性金属有机笼高效液相色谱固定相的制备及手性分离性能研究[D]: [硕士学位论文]. 昆明: 云南师范大学, 2024. |
[4] | 陈娟鹃, 肖艳, 李翔. 色谱技术在手性药物分离研究中的应用[J]. 科技创新与生产力, 2024, 45(11): 106-109. |
[5] | 郭浩铭, 魏一木, 刘雪科, 刘东晖, 王鹏, 周志强. 手性农药选择性生物活性与毒性效应研究进展[J]. 农药学学报, 2022, 24(5): 1108-1124. |
[6] | 李丽燕. 乡村振兴背景下果蔬中农药残留检测技术浅析[J]. 种子科技, 2021, 39(16): 85-86. |
[7] | 党铭铭, 刘民华, 柳爱平, 黄路, 刘卫东, 欧晓明, 刘兴平, 任叶果, 伍惠玲. 琥珀酸脱氢酶抑制剂类杀菌剂的最新研究进展[J]. 农药, 2020, 59(6): 391-396. |
[8] | 黄珺玲, 王津津, 王勤涛. 牙周炎环境下人牙龈成纤维细胞线粒体稳态的失衡[J]. 口腔疾病防治, 2024, 32(12): 916-924. |
[9] | Sunanda, T., Ray, B., Mahalakshmi, A.M., Bhat, A., Rashan, L., Rungratanawanich, W., et al. (2021) Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson’s Disease: The Role of Brain Renin Angiotensin System Components. Biomolecules, 11, Article 1669. https://doi.org/10.3390/biom11111669 |
[10] | Mukherjee, S. and Ghosh, A. (2020) Molecular Mechanism of Mitochondrial Respiratory Chain Assembly and Its Relation to Mitochondrial Diseases. Mitochondrion, 53, 1-20. https://doi.org/10.1016/j.mito.2020.04.002 |
[11] | 杜士杰, 覃兆海. 复合物Ⅱ抑制剂的作用机制和研究进展[J]. 农药学学报, 2018, 20(5): 545-556. |
[12] | Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., et al. (2005) Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex II. Cell, 121, 1043-1057. https://doi.org/10.1016/j.cell.2005.05.025 |
[13] | Zhang, C.Q., Yuan, S.K., Sun, H.Y., Qi, Z.Q., Zhou, M.G. and Zhu, G.N. (2007) Sensitivity of Botrytis cinerea from Vegetable Greenhouses to Boscalid. Plant Pathology, 56, 646-653. https://doi.org/10.1111/j.1365-3059.2007.01611.x |
[14] | 魏阁, 高梦琪, 朱晓磊, 杨光富. 靶向琥珀酸脱氢酶的酰胺类杀菌剂的研究进展[J]. 农药学学报, 2019, 21(Z1): 673-680. |
[15] | Carvalho, L., Luque-Ortega, J.R., López-Martín, C., Castanys, S., Rivas, L. and Gamarro, F. (2011) The 8-Aminoquinoline Analogue Sitamaquine Causes Oxidative Stress in Leishmania Donovani Promastigotes by Targeting Succinate Dehydrogenase. Antimicrobial Agents and Chemotherapy, 55, 4204-4210. https://doi.org/10.1128/aac.00520-11 |
[16] | 柏亚罗. 琥珀酸脱氢酶抑制剂(SDHI)类杀菌剂研发进展及其重点产品评析[J]. 世界农药, 2022, 44(12): 6-25, 51. |
[17] | Liu, Q., Dong, F., Xu, J., Liu, X., Wu, X., Li, R., et al. (2020) Enantioseparation and Dissipation Monitoring of Oxathiapiprolin in Grape Using Supercritical Fluid Chromatography Tandem Mass Spectrometry. Journal of Separation Science, 43, 4077-4087. https://doi.org/10.1002/jssc.202000668 |
[18] | 李安邦, 李中珊, 赵洋, 等. 新型吡唑联噻吩甲酰胺类衍生物的设计、合成及其抑菌活性研究[J]. 有机化学, 2020, 40(9): 2836-2844. |
[19] | 王富芸, 刘凤娇, 马成, 朱宇珂, 李莉. 氟唑菌酰羟胺在番茄中的消解及短期膳食风险评估[J]. 农药学学报, 2023, 25(4): 930-936. |
[20] | 左江滔. 含1,3,4-噻二唑的吡唑酰胺类衍生物的合成与抑菌活性筛选[D]: [硕士学位论文]. 南京: 南京农业大学, 2022. |
[21] | 孙艺丹. 防治小麦赤霉病的三种增效剂和生防病毒研究[D]: [硕士学位论文]. 南京: 南京农业大学, 2022. |
[22] | Neves, D.L. and Bradley, C.A. (2019) Baseline Sensitivity of Cercospora Zeae-Maydis to Pydiflumetofen, a New Succinate Dehydrogenase Inhibitor Fungicide. Crop Protection, 119, 177-179. https://doi.org/10.1016/j.cropro.2019.01.021 |
[23] | 王丽, 石延霞, 李宝聚, 刘长令, 向文胜. 甲氧基丙烯酸酯类杀菌剂研究进展[J]. 农药科学与管理, 2008, 29(9): 24-27. |
[24] | 金家渺, 宋佳, 沈廷伟, 吕洁, 金智超. 不对称氮杂环卡宾催化在农药活性分子合成中的应用[J]. 世界农药, 2023, 45(2): 38-43. |
[25] | Katagi, T. (2012) Isomerization of Chiral Pesticides in the Environment. Journal of Pesticide Science, 37, 1-14. https://doi.org/10.1584/jpestics.d11-036 |
[26] | Ye, J., Zhao, M., Liu, J. and Liu, W. (2010) Enantioselectivity in Environmental Risk Assessment of Modern Chiral Pesticides. Environmental Pollution, 158, 2371-2383. https://doi.org/10.1016/j.envpol.2010.03.014 |
[27] | Armstrong, D.W., Reid, G.L., Hilton, M.L. and Chang, C.-D. (1993) Relevance of Enantiomeric Separations in Environmental Science. Environmental Pollution, 79, 51-58. https://doi.org/10.1016/0269-7491(93)90177-p |
[28] | 段劲生, 沈杨, 王梅, 董旭, 孙明娜, 高同春. 手性酰胺类杀菌剂研究进展[J]. 中国农学通报, 2020, 36(9): 107-112. |
[29] | 刘剑剑. 硫/磷杂原子手性中心功能分子的构建及其农用生物活性研究[D]: [博士学位论文]. 贵阳: 贵州大学, 2024. |
[30] | Wang, Z., Li, R., Zhang, J., Liu, S., He, Z. and Wang, M. (2021) Evaluation of Exploitive Potential for Higher Bioactivity and Lower Residue Risk Enantiomer of Chiral Fungicide Pydiflumetofen. Pest Management Science, 77, 3419-3426. https://doi.org/10.1002/ps.6389 |
[31] | Di, S., Wang, Z., Cang, T., Xie, Y., Zhao, H., Qi, P., et al. (2021) Enantioselective Toxicity and Mechanism of Chiral Fungicide Penflufen Based on Experiments and Computational Chemistry. Ecotoxicology and Environmental Safety, 222, Article 112534. https://doi.org/10.1016/j.ecoenv.2021.112534 |
[32] | Liu, R., Deng, Y., Wu, D., Liu, Y., Wang, Z., Yu, S., et al. (2023) Systemic Enantioselectivity Study of Penthiopyrad: Enantioselective Bioactivity, Acute Toxicity, Degradation and Influence on Tomato. Pest Management Science, 79, 2107-2116. https://doi.org/10.1002/ps.7388 |
[33] | An, X., Pan, X., Li, R., Dong, F., Zhu, W., Xu, J., et al. (2023) Comprehensive Evaluation of Novel Fungicide Benzovindiflupyr at the Enantiomeric Level: Bioactivity, Toxicity, Mechanism, and Dissipation Behavior. Science of The Total Environment, 860, Article 160535. https://doi.org/10.1016/j.scitotenv.2022.160535 |
[34] | Li, J., Zhou, H., Zuo, W., An, W., Zhang, Y. and Zhao, Q. (2022) Simultaneous Enantioselective Determination of Two Succinate-Dehydrogenase-Inhibitor Fungicides in Plant-Origin Foods by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromatography A, 1677, Article 463325. https://doi.org/10.1016/j.chroma.2022.463325 |
[35] | Guo, P., Ren, Y., Pan, X., Xu, J., Wu, X., Zheng, Y., et al. (2024) Stereoselective Bioactivity and Action Mechanism of the Fungicide Isopyrazam. Journal of Agricultural and Food Chemistry, 72, 18909-18917. https://doi.org/10.1021/acs.jafc.4c06270 |
[36] | Tong, Z., Chu, Y., Wen, H., Li, B., Dong, X., Sun, M., et al. (2022) Stereoselective Bioactivity, Toxicity and Degradation of Novel Fungicide Sedaxane with Four Enantiomers under Rice-Wheat Rotation Mode. Ecotoxicology and Environmental Safety, 241, Article 113784. https://doi.org/10.1016/j.ecoenv.2022.113784 |
[37] | 常维霞. 手性农药乙螨唑对映体的果园环境行为及毒性研究[D]: [博士学位论文]. 北京: 中国农业科学院, 2020. |
[38] | 宋文阳, 竺浩杰, 徐笑笑, 刘鹏, 尹晓辉, 刘训悦. 三唑类杀菌剂的水环境毒理学研究进展[J]. 农药学学报, 2024, 26(1): 23-35. |
[39] | Li, H., Jing, T., Li, T., Li, B. and Mu, W. (2021) Research Progress on Ecotoxicological Effects of Succinic Dehydrogenase Inhibiting Fungicides on Aquatic Organisms. Chinese Journal of Pesticide Science, 23, 446-455. |
[40] | 孙炜钧, 刘天明, 侯梅芳, 任德鑫, 李丹, 陈红星, 谢凌天. 水体中溶解有机质对有机污染物生物效应的影响[J]. 地球环境学报, 2024, 15(5): 742-758. |
[41] | Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., et al. (2013) The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature, 496, 498-503. https://doi.org/10.1038/nature12111 |
[42] | 郭沛霖. 琥珀酸脱氢酶抑制剂类杀菌剂吡噻菌胺对映体活性和毒性差异行为研究[D]: [硕士学位论文]. 北京: 中国农业科学院, 2022. |
[43] | Di, S., Cang, T., Liu, Z., Xie, Y., Zhao, H., Qi, P., et al. (2022) Comprehensive Evaluation of Chiral Pydiflumetofen from the Perspective of Reducing Environmental Risks. Science of The Total Environment, 826, Article 154033. https://doi.org/10.1016/j.scitotenv.2022.154033 |
[44] | 李本坤. 手性杀菌剂氟唑环菌胺立体选择性降解、活性和生物毒性研究[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2021. |
[45] | Wang, Z., Tan, Y., Li, Y., Duan, J., Wu, Q., Li, R., et al. (2022) Comprehensive Study of Pydiflumetofen in Danio Rerio: Enantioselective Insight into the Toxic Mechanism and Fate. Environment International, 167, Article 107406. https://doi.org/10.1016/j.envint.2022.107406 |
[46] | Ren, B., Zhao, T., Li, Y., Liang, H., Zhao, Y., Chen, H., et al. (2021) Enantioselective Bioaccumulation and Toxicity of the Novel Chiral Antifungal Agrochemical Penthiopyrad in Zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 228, Article 113010. https://doi.org/10.1016/j.ecoenv.2021.113010 |
[47] | 刘润华. 手性杀菌剂呋吡菌胺立体选择性方法及生物效应研究[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2020. |
[48] | 宋鑫源. 氟唑菌酰胺的合成工艺研究[D]: [硕士学位论文]. 石家庄: 河北科技大学, 2024. |
[49] | 吕小康. 面手性类化合物立体选择性合成及其农药活性研究[D]: [博士学位论文]. 贵阳: 贵州大学, 2024. |
[50] | 刘元德, 王文杰, 程凡瑞, 赵玉星, 田洪彰, 邰磊, 毕泗兴, 付成龙, 杨兴娥, 杜笑川, 陈鹏飞. 全地形遥控自走式烟草植保机的研制与应用[J]. 农业开发与装备, 2024(12): 61-63. |
[51] | Huang, X., Wang, A., Chen, Y., Sun, Q., Xu, L., Liu, F., et al. (2022) Toxicological Risks of SDHIs and QoIs to Zebrafish (Danio rerio) and the Corresponding Poisoning Mechanism. Aquatic Toxicology, 252, Article 106282. https://doi.org/10.1016/j.aquatox.2022.106282 |
[52] | Ye, X., Liu, Y. and Li, F. (2016) Biomarkers of Oxidative Stress in the Assessment of Enantioselective Toxicity of Chiral Pesticides. Current Protein & Peptide Science, 18, 33-40. https://doi.org/10.2174/1389203717666160413124654 |