|
Pure Mathematics 2025
Fock空间上的小Hankel算子
|
Abstract:
本文主要研究了Fock空间
上小Hankel算子
的有界性和紧性,得到了
在
上有界的充分必要条件是其符号
属于Fock空间
;
在
上紧的充分必要条件是
属于
。
This paper mainly studies the boundedness and compactness of the small Hankel operator
on Fock space
. It is found that the necessary and sufficient condition for
being bounded on
is that its symbol
[1] | Zhu, K. (2012) Analysis on Fock Spaces, Graduate Texts in Mathematics, Vol. 263. Springer. |
[2] | Janson, S., Peetre, J. and Rochberg, R. (1987) Hankel Forms and the Fock Space. Revista Matemática Iberoamericana, 3, 61-138. https://doi.org/10.4171/rmi/46 |
[3] | Wallstén, R. (1989) The Sp-Criterion for Hankel Forms on the Fock Space, 0 < p < 1. Mathematica Scandinavica, 64, 123-132. https://doi.org/10.7146/math.scand.a-12251 |
[4] | 胡璋剑, 吕小芬. 加权Fock空间上的Hankel算子[J]. 中国科学: 数学, 2016, 46(2): 141-156. |
[5] | 王尔敏. 全纯Fock空间上的几类算子[D]: [博士学位论文]. 苏州: 苏州大学, 2018. |
[6] | 王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报(中文版), 2019, 62(4): 561-572. |
[7] | Wang, E. and Hu, Z. (2018) Small Hankel Operators between Fock Spaces. Complex Variables and Elliptic Equations, 64, 409-419. https://doi.org/10.1080/17476933.2018.1441832 |
[8] | 刘桂军, 王晓峰, 陈建军. IDA与Doubling Fock空间上Hankel算子[J]. 数学学报(中文版), 2023, 66(5): 1003-1018. |
[9] | Hu, Z. and Virtanen, J.A. (2023) IDA and Hankel Operators on Fock Spaces. Analysis & PDE, 16, 2041-2077. https://doi.org/10.2140/apde.2023.16.2041 |
[10] | Lv, X. and Wang, E. (2024) Hankel Operators on Doubling Fock Spaces. Journal of Mathematical Analysis and Applications, 531, Article 127780. https://doi.org/10.1016/j.jmaa.2023.127780 |
[11] | Agbor, D.A. and Forwa, K.N. (2025) Ap Weights and an Application to Hankel Operators on Fock Spaces with Variable Exponents on . Journal of Mathematical Analysis and Applications, 543, Article 128899. https://doi.org/10.1016/j.jmaa.2024.128899 |
[12] | Zeng, Z., Hu, Z. and Wang, X. (2024) Bounded, Compact and Schatten Class Hankel Operators on Fock-Type Spaces. Transactions of the American Mathematical Society, 378, 805-849. https://doi.org/10.1090/tran/9290 |