全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离散动力系统上的一致收敛与传递集
Uniform Convergence and Transitive Sets on Discrete Dynamical Systems

DOI: 10.12677/pm.2025.152057, PP. 153-159

Keywords: 传递集,弱混合集,一致收敛
Transitive Set
, Weakly Mixing Set, Uniform Convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要讨论离散动力系统上一致收敛与传递集的关系。设 ( X,d ) 是一个紧致度量空间, f n :XX X 上的连续自映射序列,并一致收敛于一个连续自映射 f 。结果表明,当 lim m d ( f n m , f m )=0 时,若 X 的非空闭子集 A ( X, f n ) 的传递集,则 A ( X,f ) 的传递集;若 X 的非空闭子集 A ( X, f n ) 的弱混合集,则 A ( X,f ) 的弱混合集。
In this paper, we mainly study the uniform convergence and transitive sets of discrete dynamical systems. Let X be a compact metric space with metric d, and

References

[1]  周作领, 尹建东, 许绍元. 拓扑动力系统: 从拓扑方法到遍历理论方法[M]. 北京: 科学出版社, 2011.
[2]  叶向东, 黄文, 邵松. 拓扑动力系统概论[M]. 北京: 科学出版社, 2008.
[3]  Moothathu, T.K.S. (2010) Diagonal Points Having Dense Orbit. Colloquium Mathematicum, 120, 127-138.
https://doi.org/10.4064/cm120-1-9
[4]  Chen, Z., Li, J. and Lü, J. (2014) On Multi-Transitivity with Respect to a Vector. Science China Mathematics, 57, 1639-1648.
https://doi.org/10.1007/s11425-014-4797-z
[5]  Salman, M. and Das, R. (2020) Multi-Transitivity in Non-Autonomous Discrete Systems. Topology and Its Applications, 278, Article ID: 107237.
https://doi.org/10.1016/j.topol.2020.107237
[6]  Li, R., Zhao, Y. and Wang, H. (2017) Furstenberg Families and Chaos on Uniform Limit Maps. The Journal of Nonlinear Sciences and Applications, 10, 805-816.
https://doi.org/10.22436/jnsa.010.02.40
[7]  Xiong, J., Fu, H. and Wang, H. (2013) A Class of Furstenberg Families and Their Applications to Chaotic Dynamics. Science China Mathematics, 57, 823-836.
https://doi.org/10.1007/s11425-013-4720-z
[8]  Li, R., Zhao, Y., Wang, H. and Liang, H. (2019) Stronger Forms of Transitivity and Sensitivity for Nonautonomous Discrete Dynamical Systems and Furstenberg Families. Journal of Dynamical and Control Systems, 26, 109-126.
https://doi.org/10.1007/s10883-019-09437-6
[9]  Li, J. (2011) Transitive Points via Furstenberg Family. Topology and Its Applications, 158, 2221-2231.
https://doi.org/10.1016/j.topol.2011.07.013
[10]  Abu-Saris, R. and Al-Hami, K. (2006) Uniform Convergence and Chaotic Behavior. Nonlinear Analysis: Theory, Methods & Applications, 65, 933-937.
https://doi.org/10.1016/j.na.2005.04.056
[11]  Román-Flores, H. (2008) Uniform Convergence and Transitivity. Chaos, Solitons & Fractals, 38, 148-153.
https://doi.org/10.1016/j.chaos.2006.10.052
[12]  Fedeli, A. and Le Donne, A. (2009) A Note on the Uniform Limit of Transitive Dynamical Systems. Bulletin of the Belgian Mathematical SocietySimon Stevin, 16, 59-66.
https://doi.org/10.36045/bbms/1235574192
[13]  Li, R. (2012) A Note on Uniform Convergence and Transitivity. Chaos, Solitons & Fractals, 45, 759-764.
https://doi.org/10.1016/j.chaos.2012.02.007
[14]  Li, R. and Wang, H. (2014) Erratum to “A Note on Uniform Convergence and Transitivity” [Chaos, Solitons and Fractals 45 (2012) 759-764]. Chaos, Solitons & Fractals, 59, 112-118.
https://doi.org/10.1016/j.chaos.2013.12.005
[15]  Liu, L. and Sun, Y. (2014) Weakly Mixing Sets and Transitive Sets for Non-Autonomous Discrete Systems. Advances in Difference Equations, 2014, Article No. 217.
https://doi.org/10.1186/1687-1847-2014-217
[16]  Oprocha, P. and Zhang, G. (2011) On Local Aspects of Topological Weak Mixing in Dimension One and Beyond. Studia Mathematica, 202, 261-288.
https://doi.org/10.4064/sm202-3-4
[17]  周小凯. 非自治动力系统的多重传递集[J]. 理论数学, 2022, 12(5): 683-686.
https://doi.org/10.12677/pm.2022.125078

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133