|
Pure Mathematics 2025
离散动力系统上的一致收敛与传递集
|
Abstract:
本文主要讨论离散动力系统上一致收敛与传递集的关系。设
是一个紧致度量空间,
是
上的连续自映射序列,并一致收敛于一个连续自映射
。结果表明,当
时,若
的非空闭子集
是
的传递集,则
是
的传递集;若
的非空闭子集
是
的弱混合集,则
是
的弱混合集。
In this paper, we mainly study the uniform convergence and transitive sets of discrete dynamical systems. Let X be a compact metric space with metric d, and
[1] | 周作领, 尹建东, 许绍元. 拓扑动力系统: 从拓扑方法到遍历理论方法[M]. 北京: 科学出版社, 2011. |
[2] | 叶向东, 黄文, 邵松. 拓扑动力系统概论[M]. 北京: 科学出版社, 2008. |
[3] | Moothathu, T.K.S. (2010) Diagonal Points Having Dense Orbit. Colloquium Mathematicum, 120, 127-138. https://doi.org/10.4064/cm120-1-9 |
[4] | Chen, Z., Li, J. and Lü, J. (2014) On Multi-Transitivity with Respect to a Vector. Science China Mathematics, 57, 1639-1648. https://doi.org/10.1007/s11425-014-4797-z |
[5] | Salman, M. and Das, R. (2020) Multi-Transitivity in Non-Autonomous Discrete Systems. Topology and Its Applications, 278, Article ID: 107237. https://doi.org/10.1016/j.topol.2020.107237 |
[6] | Li, R., Zhao, Y. and Wang, H. (2017) Furstenberg Families and Chaos on Uniform Limit Maps. The Journal of Nonlinear Sciences and Applications, 10, 805-816. https://doi.org/10.22436/jnsa.010.02.40 |
[7] | Xiong, J., Fu, H. and Wang, H. (2013) A Class of Furstenberg Families and Their Applications to Chaotic Dynamics. Science China Mathematics, 57, 823-836. https://doi.org/10.1007/s11425-013-4720-z |
[8] | Li, R., Zhao, Y., Wang, H. and Liang, H. (2019) Stronger Forms of Transitivity and Sensitivity for Nonautonomous Discrete Dynamical Systems and Furstenberg Families. Journal of Dynamical and Control Systems, 26, 109-126. https://doi.org/10.1007/s10883-019-09437-6 |
[9] | Li, J. (2011) Transitive Points via Furstenberg Family. Topology and Its Applications, 158, 2221-2231. https://doi.org/10.1016/j.topol.2011.07.013 |
[10] | Abu-Saris, R. and Al-Hami, K. (2006) Uniform Convergence and Chaotic Behavior. Nonlinear Analysis: Theory, Methods & Applications, 65, 933-937. https://doi.org/10.1016/j.na.2005.04.056 |
[11] | Román-Flores, H. (2008) Uniform Convergence and Transitivity. Chaos, Solitons & Fractals, 38, 148-153. https://doi.org/10.1016/j.chaos.2006.10.052 |
[12] | Fedeli, A. and Le Donne, A. (2009) A Note on the Uniform Limit of Transitive Dynamical Systems. Bulletin of the Belgian Mathematical Society—Simon Stevin, 16, 59-66. https://doi.org/10.36045/bbms/1235574192 |
[13] | Li, R. (2012) A Note on Uniform Convergence and Transitivity. Chaos, Solitons & Fractals, 45, 759-764. https://doi.org/10.1016/j.chaos.2012.02.007 |
[14] | Li, R. and Wang, H. (2014) Erratum to “A Note on Uniform Convergence and Transitivity” [Chaos, Solitons and Fractals 45 (2012) 759-764]. Chaos, Solitons & Fractals, 59, 112-118. https://doi.org/10.1016/j.chaos.2013.12.005 |
[15] | Liu, L. and Sun, Y. (2014) Weakly Mixing Sets and Transitive Sets for Non-Autonomous Discrete Systems. Advances in Difference Equations, 2014, Article No. 217. https://doi.org/10.1186/1687-1847-2014-217 |
[16] | Oprocha, P. and Zhang, G. (2011) On Local Aspects of Topological Weak Mixing in Dimension One and Beyond. Studia Mathematica, 202, 261-288. https://doi.org/10.4064/sm202-3-4 |
[17] | 周小凯. 非自治动力系统的多重传递集[J]. 理论数学, 2022, 12(5): 683-686. https://doi.org/10.12677/pm.2022.125078 |