全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

临界阻尼型Navier-Stokes方程在Lei-Lin-Gevrey空间 X a,σ 0 ( 3 )中的局部适定性
The Local Suitability of the Critical Damping Navier-Stokes Equation in Lei-Lin-Gevrey Space X a,σ 0 ( 3 )

DOI: 10.12677/pm.2025.152055, PP. 138-146

Keywords: 阻尼,Navier-Stokes方程,Lei-Lin-Gevrey空间,局部解
Damping
, Navier-Stokes Equations, Lei-Lin-Gevrey Space, Local Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文证明带有临界型阻尼项的Navier-Stokes方程在Lei-Lin-Gevrey空间 X a,σ 0 ( 3 ) 中存在唯一的局部解。文章利用不动点定理和热方程解的有关性质来证明这一主要结论。
In this paper, it is proved that the Navier-Stokes equation with critical damping terms has a unique local solution in the Lei-Lin-Gevrey space X a,σ 0 ( 3 ) . In this paper, the main conclusion is proved by using the fixed point theorem and the related properties of the solution of the heat equation.

References

[1]  Hopf, E. (1950) Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet. Mathematische Nachrichten, 4, 213-231.
https://doi.org/10.1002/mana.3210040121
[2]  Fujita, H. and Kato, T. (1964) On the Navier-Stokes Initial Value Problem. I. Archive for Rational Mechanics and Analysis, 16, 269-315.
https://doi.org/10.1007/bf00276188
[3]  Tsai, T. (2018) Lectures on Navier-Stokes Equations. American Mathematical Society.
https://doi.org/10.1090/gsm/192
[4]  Robinson, J.C., Rodrigo, J.L. and Sadowski, W. (2016) The Three-Dimensional Navier-Stokes Equations. Cambridge University Press.
https://doi.org/10.1017/cbo9781139095143
[5]  Melo, W.G., de Souza, M. and Santos, T.S.R. (2022) On the Generalized Magnetohydrodynamics-α Equations with Fractional Dissipation in Lei-Lin and Lei-Lin-Gevrey Spaces. Zeitschrift für angewandte Mathematik und Physik, 73, Article No. 44.
https://doi.org/10.1007/s00033-022-01677-0
[6]  Cai, X. and Zhou, Y. (2022) Global Existence of Strong Solutions for the Generalized Navier-Stokes Equations with Damping. Acta Mathematicae Applicatae Sinica, English Series, 38, 627-634.
https://doi.org/10.1007/s10255-022-1106-4
[7]  Liu, X.F. and Zou, L.L. (2020) Well-Posedness and Decay of Solution to Three-Dimensional Generalized Navier-Stokes Equations with Damping. Journal of Donghua University (English Edition), 37, 396-401.
https://doi.org/10.19884/j.1672-5220.202008054
[8]  Cai, X. and Jiu, Q. (2008) Weak and Strong Solutions for the Incompressible Navier-Stokes Equations with Damping. Journal of Mathematical Analysis and Applications, 343, 799-809.
https://doi.org/10.1016/j.jmaa.2008.01.041
[9]  Melo, W.G., Rocha, N.F. and dos Santos Costa, N. (2023) Solutions for the Navier-Stokes Equations with Critical and Subcritical Fractional Dissipation in Lei-Lin and Lei-Lin-Gevrey Spaces. Electronic Journal of Differential Equations, 2023, 1-12.
https://doi.org/10.58997/ejde.2023.78
[10]  Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312.
https://doi.org/10.1016/j.jde.2003.07.007
[11]  Cannone, M. (1995) Ondelettes, paraproduits et Navier-Stokes. Diderot Editeur.
[12]  Melo, W.G. and Rocha, N.F. (2022) New Blow‐Up Criteria for Local Solutions of the 3D Generalized MHD Equations in Lei-Lin-Gevrey Spaces. Mathematische Nachrichten, 296, 757-778.
https://doi.org/10.1002/mana.202000309

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133