|
Pure Mathematics 2025
临界阻尼型Navier-Stokes方程在Lei-Lin-Gevrey空间中的局部适定性
|
Abstract:
本文证明带有临界型阻尼项的Navier-Stokes方程在Lei-Lin-Gevrey空间
中存在唯一的局部解。文章利用不动点定理和热方程解的有关性质来证明这一主要结论。
In this paper, it is proved that the Navier-Stokes equation with critical damping terms has a unique local solution in the Lei-Lin-Gevrey space
. In this paper, the main conclusion is proved by using the fixed point theorem and the related properties of the solution of the heat equation.
[1] | Hopf, E. (1950) Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet. Mathematische Nachrichten, 4, 213-231. https://doi.org/10.1002/mana.3210040121 |
[2] | Fujita, H. and Kato, T. (1964) On the Navier-Stokes Initial Value Problem. I. Archive for Rational Mechanics and Analysis, 16, 269-315. https://doi.org/10.1007/bf00276188 |
[3] | Tsai, T. (2018) Lectures on Navier-Stokes Equations. American Mathematical Society. https://doi.org/10.1090/gsm/192 |
[4] | Robinson, J.C., Rodrigo, J.L. and Sadowski, W. (2016) The Three-Dimensional Navier-Stokes Equations. Cambridge University Press. https://doi.org/10.1017/cbo9781139095143 |
[5] | Melo, W.G., de Souza, M. and Santos, T.S.R. (2022) On the Generalized Magnetohydrodynamics-α Equations with Fractional Dissipation in Lei-Lin and Lei-Lin-Gevrey Spaces. Zeitschrift für angewandte Mathematik und Physik, 73, Article No. 44. https://doi.org/10.1007/s00033-022-01677-0 |
[6] | Cai, X. and Zhou, Y. (2022) Global Existence of Strong Solutions for the Generalized Navier-Stokes Equations with Damping. Acta Mathematicae Applicatae Sinica, English Series, 38, 627-634. https://doi.org/10.1007/s10255-022-1106-4 |
[7] | Liu, X.F. and Zou, L.L. (2020) Well-Posedness and Decay of Solution to Three-Dimensional Generalized Navier-Stokes Equations with Damping. Journal of Donghua University (English Edition), 37, 396-401. https://doi.org/10.19884/j.1672-5220.202008054 |
[8] | Cai, X. and Jiu, Q. (2008) Weak and Strong Solutions for the Incompressible Navier-Stokes Equations with Damping. Journal of Mathematical Analysis and Applications, 343, 799-809. https://doi.org/10.1016/j.jmaa.2008.01.041 |
[9] | Melo, W.G., Rocha, N.F. and dos Santos Costa, N. (2023) Solutions for the Navier-Stokes Equations with Critical and Subcritical Fractional Dissipation in Lei-Lin and Lei-Lin-Gevrey Spaces. Electronic Journal of Differential Equations, 2023, 1-12. https://doi.org/10.58997/ejde.2023.78 |
[10] | Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312. https://doi.org/10.1016/j.jde.2003.07.007 |
[11] | Cannone, M. (1995) Ondelettes, paraproduits et Navier-Stokes. Diderot Editeur. |
[12] | Melo, W.G. and Rocha, N.F. (2022) New Blow‐Up Criteria for Local Solutions of the 3D Generalized MHD Equations in Lei-Lin-Gevrey Spaces. Mathematische Nachrichten, 296, 757-778. https://doi.org/10.1002/mana.202000309 |