%0 Journal Article
%T 临界阻尼型Navier-Stokes方程在Lei-Lin-Gevrey空间中的局部适定性
The Local Suitability of the Critical Damping Navier-Stokes Equation in Lei-Lin-Gevrey Space
%A 刘爱博
%A 常莹
%J Pure Mathematics
%P 138-146
%@ 2160-7605
%D 2025
%I Hans Publishing
%R 10.12677/pm.2025.152055
%X 本文证明带有临界型阻尼项的Navier-Stokes方程在Lei-Lin-Gevrey空间
中存在唯一的局部解。文章利用不动点定理和热方程解的有关性质来证明这一主要结论。
In this paper, it is proved that the Navier-Stokes equation with critical damping terms has a unique local solution in the Lei-Lin-Gevrey space
. In this paper, the main conclusion is proved by using the fixed point theorem and the related properties of the solution of the heat equation.
%K 阻尼,
%K Navier-Stokes方程,
%K Lei-Lin-Gevrey空间,
%K 局部解
Damping
%K Navier-Stokes Equations
%K Lei-Lin-Gevrey Space
%K Local Solution
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=108263