%0 Journal Article %T 临界阻尼型Navier-Stokes方程在Lei-Lin-Gevrey空间 X a,σ 0 ( 3 )中的局部适定性
The Local Suitability of the Critical Damping Navier-Stokes Equation in Lei-Lin-Gevrey Space X a,σ 0 ( 3 ) %A 刘爱博 %A 常莹 %J Pure Mathematics %P 138-146 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.152055 %X 本文证明带有临界型阻尼项的Navier-Stokes方程在Lei-Lin-Gevrey空间 X a,σ 0 ( 3 ) 中存在唯一的局部解。文章利用不动点定理和热方程解的有关性质来证明这一主要结论。
In this paper, it is proved that the Navier-Stokes equation with critical damping terms has a unique local solution in the Lei-Lin-Gevrey space X a,σ 0 ( 3 ) . In this paper, the main conclusion is proved by using the fixed point theorem and the related properties of the solution of the heat equation. %K 阻尼, %K Navier-Stokes方程, %K Lei-Lin-Gevrey空间, %K 局部解
Damping %K Navier-Stokes Equations %K Lei-Lin-Gevrey Space %K Local Solution %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=108263