全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

异价Cu取代对Zn掺杂Mg3Sb2基材料热电性能的影响
Effects of Aliovalent Cu Substitution on Thermoelectric Properties in Zn-Doping Mg3Sb2-Based Materials

DOI: 10.12677/ms.2025.152037, PP. 317-325

Keywords: p型Mg3Sb2,Zn空位,Cu取代,热电性能
p-Type Mg3Sb2
, Zn Vacancy, Cu Substitution, Thermoelectric Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zn空位对Zn-Sb Zintl相热电材料的热输运和电输运有重要影响。本文采用快速感应熔炼和真空热压法制备了p型Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1)样品,研究了Zn空位上的异价铜取代对样品热电性能的影响。实验结果表明,在低掺杂浓度下(x < 0.05),Cu原子优先占据Zn空位,降低载流子浓度,在x ? 0.05的样品中生成第二相MgCuSb,抑制了双极效应,同时调制掺杂提高了功率因子。此外,异价Cu取代和MgCuSb相的存在导致晶格无序,增强了声子散射,降低了晶格热导率。因此,Mg1.77Cu0.05Zn1.175Ag0.03Sb2样品在673 K时得到了最大zT值为0.60,相比于未掺杂Cu样品的zT值提升了33%。我们的研究表明,用异价Cu调控Zn空位是提高p型Mg3Sb2基材料热电性能的有效策略。
Zn vacancies have been proposed to have significant impacts on thermal and electronic transport for Zn-Sb Zintl phase materials. In this work, we investigated the effect of aliovalent Cu substitution at Zn vacancies on thermoelectric performance in p-type Mg1.77CuxZn1.20.5xAg0.03Sb2 (x = 0, 0.02, 0.05, 0.08, 0.1) samples prepared by rapid induction melting and hot pressing. Experimental results revealed that Cu atoms preferentially occupy the Zn vacancies to decrease the carrier concentration at low concentrations of doping (x < 0.05) and generate second phase of MgCuSb in x ? 0.05 samples, which enhances the power factor due to the suppression of the bipolar effect and modulation doping. Moreover, the lattice disorder caused by the aliovalent Cu substitution and the presence of MgCuSb phase strengthens phonon scattering and reduces the lattice thermal conductivity. Therefore, a maximum zT value of 0.60 is discovered at 673 K for the Mg1.77Cu0.05Zn1.175Ag0.03Sb2 sample, which is 33% higher than that of the undoped Cu sample. Our research indicates that manipulating Zn vacancies with aliovalent Cu is a useful tactic for enhancing the thermoelectric performance of p-type Mg3Sb2-based materials.

References

[1]  Shi, X., Zou, J. and Chen, Z. (2020) Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 120, 7399-7515.
https://doi.org/10.1021/acs.chemrev.0c00026
[2]  Mukherjee, M., Srivastava, A. and Singh, A.K. (2022) Recent Advances in Designing Thermoelectric Materials. Journal of Materials Chemistry C, 10, 12524-12555.
https://doi.org/10.1039/d2tc02448a
[3]  Jia, N., Cao, J., Tan, X.Y., Dong, J., Liu, H., Tan, C.K.I., et al. (2021) Thermoelectric Materials and Transport Physics. Materials Today Physics, 21, Article 100519.
https://doi.org/10.1016/j.mtphys.2021.100519
[4]  Zhou, Z., Han, G., Lu, X., Wang, G. and Zhou, X. (2022) High-Performance Magnesium-Based Thermoelectric Materials: Progress and Challenges. Journal of Magnesium and Alloys, 10, 1719-1736.
https://doi.org/10.1016/j.jma.2022.05.021
[5]  Yan, Q. and Kanatzidis, M.G. (2021) High-Performance Thermoelectrics and Challenges for Practical Devices. Nature Materials, 21, 503-513.
https://doi.org/10.1038/s41563-021-01109-w
[6]  Jiang, M., Fu, Y., Zhang, Q., Hu, Z., Huang, A., Wang, S., et al. (2023) High-Efficiency and Reliable Same-Parent Thermoelectric Modules Using Mg3Sb2-Based Compounds. National Science Review, 10, nwad095.
https://doi.org/10.1093/nsr/nwad095
[7]  Shuai, J., Wang, Y., Kim, H.S., Liu, Z., Sun, J., Chen, S., et al. (2015) Thermoelectric Properties of Na-Doped Zintl Compound: Mg3-xNaxSb2. Acta Materialia, 93, 187-193.
https://doi.org/10.1016/j.actamat.2015.04.023
[8]  Fu, Y., Zhang, X., Liu, H., Tian, J. and Zhang, J. (2018) Thermoelectric Properties of Ag-Doped Compound: Mg3-xAgxSb2. Journal of Materiomics, 4, 75-79.
https://doi.org/10.1016/j.jmat.2017.12.002
[9]  Tang, X., Zhang, B., Zhang, X., Wang, S., Lu, X., Han, G., et al. (2020) Enhancing the Thermoelectric Performance of P-Type Mg3Sb2 via Codoping of Li and Cd. ACS Applied Materials & Interfaces, 12, 8359-8365.
https://doi.org/10.1021/acsami.9b23059
[10]  Wu, L., Zhou, Z., Han, G., Zhang, B., Yu, J., Wang, H., et al. (2023) Realizing High Thermoelectric Performance in P-Type CaZn2Sb2-Alloyed Mg3Sb2-Based Materials via Band and Point Defect Engineering. Chemical Engineering Journal, 475, Article 145988.
https://doi.org/10.1016/j.cej.2023.145988
[11]  Hu, J., Zhu, J., Guo, F., Qin, H., Liu, Y., Zhang, Q., et al. (2022) Electronic Orbital Alignment and Hierarchical Phonon Scattering Enabling High Thermoelectric Performance P-Type Mg3Sb2 Zintl Compounds. Research, 2022, Article 9842949.
https://doi.org/10.34133/2022/9842949
[12]  Ahmadpour, F., Kolodiazhnyi, T. and Mozharivskyj, Y. (2007) Structural and Physical Properties of Mg3xZnxSb2 (x = 0~1.34). Journal of Solid-State Chemistry, 180, 2420-2428.
https://doi.org/10.1016/j.jssc.2007.06.011
[13]  Niu, Y., Yang, C., Zhou, T., Pan, Y., Song, J., Jiang, J., et al. (2020) Enhanced Average Thermoelectric Figure of Merit of P-Type Zintl Phase Mg2ZnSb2 via Zn Vacancy Tuning and Hole Doping. ACS Applied Materials & Interfaces, 12, 37330-37337.
https://doi.org/10.1021/acsami.0c09391
[14]  Chen, C., Xue, W., Li, S., Zhang, Z., Li, X., Wang, X., et al. (2019) Zintl-Phase Eu2ZnSb2: A Promising Thermoelectric Material with Ultralow Thermal Conductivity. Proceedings of the National Academy of Sciences, 116, 2831-2836.
https://doi.org/10.1073/pnas.1819157116
[15]  Chen, C., Li, X., Xue, W., Bai, F., Huang, Y., Yao, H., et al. (2020) Manipulating the Intrinsic Vacancies for Enhanced Thermoelectric Performance in Eu2ZnSb2 Zintl Phase. Nano Energy, 73, Article 104771.
https://doi.org/10.1016/j.nanoen.2020.104771
[16]  Yao, H., Chen, C., Xue, W., Bai, F., Cao, F., Lan, Y., et al. (2021) Vacancy Ordering Induced Topological Electronic Transition in Bulk Eu2ZnSb2. Science Advances, 7, eabd6162.
https://doi.org/10.1126/sciadv.abd6162
[17]  Wang, C., Wang, Q., Zhang, Q., Chen, C. and Chen, Y. (2022) Intrinsic Zn Vacancies-Induced Wavelike Tunneling of Phonons and Ultralow Lattice Thermal Conductivity in Zintl Phase Sr2ZnSb2. Chemistry of Materials, 34, 7837-7844.
https://doi.org/10.1021/acs.chemmater.2c01430
[18]  Zhu, M., Wu, Z., Liu, Q., Zhu, T., Zhao, X., Huang, B., et al. (2018) Defect Modulation on CaZn1xAg1ySb (0 < x < 1; 0 < y < 1) Zintl Phases and Enhanced Thermoelectric Properties with High zT Plateaus. Journal of Materials Chemistry A, 6, 11773-11782. Https://doi.org/10.1039/c8ta04001j
[19]  Zhang, J., Liu, X., Liu, Q. and Xia, S. (2020) Structure Transition and Thermoelectric Properties Related to AZn (1 − X)/2CuxSb (A = Ca, Eu, Sr). Journal of Alloys and Compounds, 816, Article 152508.
https://doi.org/10.1016/j.jallcom.2019.152508
[20]  Chanakian, S., Peng, W., Meschke, V., Ashiquzzaman Shawon, A.K.M., Adamczyk, J., Petkov, V., et al. (2023) Investigating the Role of Vacancies on the Thermoelectric Properties of EuCuSb-Eu2ZnSb2 Alloys. Angewandte Chemie International Edition, 62, e202301176.
https://doi.org/10.1002/anie.202301176
[21]  Xie, L., Yin, L., Yu, Y., Peng, G., Song, S., Ying, P., et al. (2023) Screening Strategy for Developing Thermoelectric Interface Materials. Science, 382, 921-928.
https://doi.org/10.1126/science.adg8392
[22]  Zhu, W., Fang, W., Zou, J., Zhu, S. and Si, J. (2022) Enhanced Thermoelectric Performance of Indium-Doped N-Type Mg3Sb2-Based Materials Synthesized by Rapid Induction Melting. Journal of Electronic Materials, 51, 1591-1596.
https://doi.org/10.1007/s11664-021-09400-x
[23]  Agne, M.T., Imasato, K., Anand, S., Lee, K., Bux, S.K., Zevalkink, A., et al. (2018) Heat Capacity of Mg3Sb2, Mg3Bi2, and Their Alloys at High Temperature. Materials Today Physics, 6, 83-88.
https://doi.org/10.1016/j.mtphys.2018.10.001
[24]  Huang, L., Liu, T., Mo, X., Yuan, G., Wang, R., Liu, H., et al. (2021) Thermoelectric Performance Improvement of P-Type Mg3Sb2-Based Materials by Zn and Ag Co-Doping. Materials Today Physics, 21, Article 100564.
https://doi.org/10.1016/j.mtphys.2021.100564
[25]  Gu, Y., Ai, W., Zhao, Y., Pan, L., Lu, C., Zong, P., et al. (2021) Remarkable Thermoelectric Property Enhancement in Cu2SnS3-CuCo2S4 Nanocomposites via 3D Modulation Doping. Journal of Materials Chemistry A, 9, 16928-16935.
https://doi.org/10.1039/d1ta02812j
[26]  Balasubramanian, P., Battabyal, M., Chandra Bose, A. and Gopalan, R. (2021) Effect of Ball-Milling on the Phase Formation and Enhanced Thermoelectric Properties in Zinc Antimonides. Materials Science and Engineering: B, 271, Article 115274.
https://doi.org/10.1016/j.mseb.2021.115274
[27]  Snyder, G.J. and Toberer, E.S. (2008) Complex Thermoelectric Materials. Nature Materials, 7, 105-114.
https://doi.org/10.1038/nmat2090
[28]  Bhardwaj, A., Rajput, A., Shukla, A.K., Pulikkotil, J.J., Srivastava, A.K., Dhar, A., et al. (2013) Mg3Sb2-Based Zintl Compound: A Non-Toxic, Inexpensive and Abundant Thermoelectric Material for Power Generation. RSC Advances, 3, 8504-8516.
https://doi.org/10.1039/c3ra40457a
[29]  Chen, C., Li, X., Li, S., Wang, X., Zhang, Z., Sui, J., et al. (2018) Enhanced Thermoelectric Performance of P-Type Mg3Sb2 by Lithium Doping and Its Tunability in an Anionic Framework. Journal of Materials Science, 53, 16001-16009.
https://doi.org/10.1007/s10853-018-2555-2
[30]  Zhang, Y., Liang, J., Liu, C., Zhou, Q., Xu, Z., Chen, H., et al. (2024) Enhancing Thermoelectric Performance in P-Type Mg3Sb2-Based Zintls through Optimization of Band Gap Structure and Nanostructuring. Journal of Materials Science & Technology, 170, 25-32.
https://doi.org/10.1016/j.jmst.2023.05.068
[31]  Kim, H., Gibbs, Z.M., Tang, Y., Wang, H. and Snyder, G.J. (2015) Characterization of Lorenz Number with Seebeck Coefficient Measurement. APL Materials, 3, Article 041506.
https://doi.org/10.1063/1.4908244
[32]  Huang, L., Liao, J., Yuan, G., Liu, T., Lei, X., Wang, C., et al. (2022) Tuning the Carrier Scattering Mechanism to Improve the Thermoelectric Performance of P-Type Mg3Sb1.5Bi0.5-Based Material by Ge Doping. Materials Today Energy, 25, Article 100977.
https://doi.org/10.1016/j.mtener.2022.100977
[33]  Tiadi, M., Battabyal, M., Jain, P.K., Chauhan, A., Satapathy, D.K. and Gopalan, R. (2021) Enhancing the Thermoelectric Efficiency in P-Type Mg3Sb2 via Mg Site Co-Doping. Sustainable Energy & Fuels, 5, 4104-4114.
https://doi.org/10.1039/d1se00656h
[34]  Xiao, S., Peng, K., Zhou, Z., Wang, H., Zheng, S., Lu, X., et al. (2023) Realizing Cd and Ag Codoping in P-Type Mg3Sb2 toward High Thermoelectric Performance. Journal of Magnesium and Alloys, 11, 2486-2494.
https://doi.org/10.1016/j.jma.2021.09.012
[35]  Lei, J., Wuliji, H., Ren, Q., Hao, X., Dong, H., Chen, H., et al. (2024) Exceptional Thermoelectric Performance in Ab2Sb2-Type Zintl Phases through Band Shaping. Energy & Environmental Science, 17, 1416-1425.
https://doi.org/10.1039/d3ee04164f

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133