全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CA4偶氮化衍生物的合成及其性能研究
Synthesis of Azo Derivatives of CA4 and Evaluation of Their Properties

DOI: 10.12677/hjmce.2025.131010, PP. 95-106

Keywords: 微管蛋白抑制剂,CA4,偶氮,光致异构性,合成
Tubulin Inhibitor
, CA4, Azo, Photoisomerism, Synthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:将微管蛋白抑制剂康普瑞汀(Combretastatin A4, CA4)的顺式二苯乙烯结构改造为偶氮苯类化合物,以其体内分布的特异性活化性能来增强其靶向性。方法:以3,4,5-三甲氧基苯胺为起始原料,经过重氮化反应后,与邻炔丙氧基苯酚进行偶合,得到关键中间体AzO-OH;关键中间体进一步与碘甲烷、溴丙烷或溴代正丁烷在K2CO3存在下进行酚羟基的取代反应,得到产物AzO-Me,AzO-Pr,AzO-Bu。结果:设计并合成得到CA4的偶氮化衍生物,其结构经NMR、MS确证;分子对接表明,该类化合物与微管蛋白具有较强的结合性,其结合模式与顺式CA4相近,因而可能具有类似或更强的微管蛋白抑制作用;光学性能研究发现,该类偶氮化合物在不同波长光照下会发生顺--->反或反--->顺的构型变化;初步的药理实验的结果显示,细胞增殖抑制活性在光照后大大提高。结论:将CA4改造为偶氮苯类化合物后,通常情况下以无生物活性但性质更稳定的反式结构存在,而在体内靶部位给予特定波段的光,就可以转化为具有活性的顺式结构发挥作用,从而可以实现“全身给药,局部激活”的靶向性能,加强了CA4的靶向性,初步的药理实验证实了上述设想。
Objective: To transform the cis-stilbene structure of the tubulin inhibitor Combretastatin A4 (CA4) into an azobenzene compound, so as to enhance its targeting ability in vivo. Method: The starting material 3,4,5-trimethoxyaniline was diazotized, then coupling with o-propargyloxyphenol to obtain the key intermediate AzO-OH; the key intermediate was further substituted with the reaction of the phenolic hydroxyl group to obtain the product AzO-Me, AzO-Pr, AzO-Bu, by combining with methyl iodide, bromopropane or bromo-n-butane in the presence of K2CO3. Results: The azo derivatives of CA4 were synthesized. Their structures were confirmed by NMR and MS. Molecular docking showed that these compounds had strong binding activities to tubulin, and the binding modes were similar to that of cis-CA4. So they may have a similar or stronger inhibitory effect on tubulin. Optical performance studies have found that this type of azo compound undergoes a cis to trans or trans to cis configuration changes under different wavelengths of light. The results of preliminary pharmacological experiments showed that the inhibitory activity of cell proliferation was greatly improved after illumination. Conclusions: After transforming CA4 into azobenzene compound, it usually exists as a stable trans-structure with no or little biological activity. However, given a specific wavelength of light at the target site in the body, it can be converted into an active cis-form. The structure plays an important role, so that the targeting performance of “systemic administration, local activation” can be realized, and the targeting ability of CA4 can be enhanced. Preliminary pharmacological experiments confirmed the hypothesis.

References

[1]  Cao, W., Chen, H., Yu, Y., Li, N. and Chen, W. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Secondary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal, 134, 783-791.
https://doi.org/10.1097/cm9.0000000000001474
[2]  Kerssemakers, J.W.J., Laura Munteanu, E., Laan, L., Noetzel, T.L., Janson, M.E. and Dogterom, M. (2006) Assembly Dynamics of Microtubules at Molecular Resolution. Nature, 442, 709-712.
https://doi.org/10.1038/nature04928
[3]  Thorpe, P.E. (2004) Vascular Targeting Agents as Cancer Therapeutics. Clinical Cancer Research, 10, 415-427.
https://doi.org/10.1158/1078-0432.ccr-0642-03
[4]  Jordan, M.A. and Wilson, L. (2004) Microtubules as a Target for Anticancer Drugs. Nature Reviews Cancer, 4, 253-265.
https://doi.org/10.1038/nrc1317
[5]  Seddigi, Z.S., Malik, M.S., Saraswati, A.P., Ahmed, S.A., Babalghith, A.O., Lamfon, H.A., et al. (2017) Recent Advances in Combretastatin Based Derivatives and Prodrugs as Antimitotic Agents. MedChemComm, 8, 1592-1603.
https://doi.org/10.1039/c7md00227k
[6]  Luo, X., Zhang, H., Chen, M., Wei, J., Zhang, Y. and Li, X. (2014) Antimetastasis and Antitumor Efficacy Promoted by Sequential Release of Vascular Disrupting and Chemotherapeutic Agents from Electrospun Fibers. International Journal of Pharmaceutics, 475, 438-449.
https://doi.org/10.1016/j.ijpharm.2014.09.006
[7]  Hamon, F., Djedaini-Pilard, F., Barbot, F. and Len, C. (2009) Azobenzenes—Synthesis and Carbohydrate Applications. Tetrahedron, 65, 10105-10123.
https://doi.org/10.1016/j.tet.2009.08.063
[8]  Borowiak, M., Nahaboo, W., Reynders, M., Nekolla, K., Jalinot, P., Hasserodt, J., et al. (2015) Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death. Cell, 162, 403-411.
https://doi.org/10.1016/j.cell.2015.06.049
[9]  Rastogi, S.K., Zhao, Z., Barrett, S.L., Shelton, S.D., Zafferani, M., Anderson, H.E., et al. (2018) Photoresponsive Azo-Combretastatin A-4 analogues. European Journal of Medicinal Chemistry, 143, 1-7.
https://doi.org/10.1016/j.ejmech.2017.11.012
[10]  Talele, T.T. (2020) Acetylene Group, Friend or Foe in Medicinal Chemistry. Journal of Medicinal Chemistry, 63, 5625-5663.
https://doi.org/10.1021/acs.jmedchem.9b01617
[11]  Idris, M.O., Yekeen, A.A., Alakanse, O.S. and Durojaye, O.A. (2020) Computer-aided Screening for Potential TMPRSS2 Inhibitors: A Combination of Pharmacophore Modeling, Molecular Docking and Molecular Dynamics Simulation Approaches. Journal of Biomolecular Structure and Dynamics, 39, 5638-5656.
https://doi.org/10.1080/07391102.2020.1792346
[12]  Rampogu, S., Zeb, A., Baek, A., Park, C., Son, M. and Lee, K.W. (2018) Discovery of Potential Plant-Derived Peptide Deformylase (PDF) Inhibitors for Multidrug-Resistant Bacteria Using Computational Studies. Journal of Clinical Medicine, 7, 563.
https://doi.org/10.3390/jcm7120563
[13]  Li, W., Sun, H., Xu, S., Zhu, Z. and Xu, J. (2017) Tubulin Inhibitors Targeting the Colchicine Binding Site: A Perspective of Privileged Structures. Future Medicinal Chemistry, 9, 1765-1794.
https://doi.org/10.4155/fmc-2017-0100
[14]  Dorléans, A., Gigant, B., Ravelli, R.B.G., Mailliet, P., Mikol, V. and Knossow, M. (2009) Variations in the Colchicine-Binding Domain Provide Insight into the Structural Switch of Tubulin. Proceedings of the National Academy of Sciences of the United States of America, 106, 13775-13779.
https://doi.org/10.1073/pnas.0904223106
[15]  Li, W., Yin, Y., Shuai, W., Xu, F., Yao, H., Liu, J., et al. (2019) Discovery of Novel Quinazolines as Potential Anti-Tubulin Agents Occupying Three Zones of Colchicine Domain. Bioorganic Chemistry, 83, 380-390.
https://doi.org/10.1016/j.bioorg.2018.10.027
[16]  Varano, F., Catarzi, D., Vigiani, E., Vincenzi, F., Pasquini, S., Varani, K., et al. (2020) Piperazine-and Piperidine-Containing Thiazolo[5, 4-D]pyrimidine Derivatives as New Potent and Selective Adenosine A2A Receptor Inverse Agonists. Pharmaceuticals, 13, Article 161.
https://doi.org/10.3390/ph13080161
[17]  Ma, Y., Gao, F., Yang, W. and Shan, Z. (2020) Analysis of Free Aniline in Chrome-Free Leather Accelerated Aging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 238, Article ID: 118402.
https://doi.org/10.1016/j.saa.2020.118402

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133