|
E-Commerce Letters 2025
基于偏好特征提取的农产品电商信息个性化推送方法
|
Abstract:
由于现行方法在农产品电商信息个性化推送中存在用户偏好理解不够深入、推送算法不精准等,导致应用效果不佳。具体表现为推送内容与用户实际需求存在偏差,用户满意度不高,同时,由于推送算法的性能限制,导致推送准确性较差,无法达到预期的推送效果。针对农产品电商信息个性化推送中现行方法存在的用户偏好理解不足、推送算法精准度低等问题,本文提出了一种基于偏好特征提取的个性化推送方法。该方法通过深入分析电商平台上的用户反馈信息,区分正负维度并提取正样本,进一步从正样本中提取用户偏好特征。基于这些偏好特征,我们对农产品进行推送评分,并生成个性化推送名单,在电商平台上实施推送。实验结果显示,该方法在MRR和HR两个评价指标上均不低于0.8,表现出较高的推送精度,有效解决了现有推送方法中的不足,实现了农产品电商信息的个性化精准推送。
Due to the lack of in-depth understanding of user preferences and inaccurate push algorithms in the current method of personalized information push for agricultural product e-commerce, the application effect is not satisfactory. Specifically, there is a deviation between the pushed content and the actual needs of users, resulting in low user satisfaction. At the same time, due to the performance limitations of the push algorithm, the accuracy of the push is poor, and the expected push effect cannot be achieved. This paper proposes a personalized push method based on preference feature extraction to address the problems of insufficient understanding of user preferences and low accuracy of push algorithms in the current methods of personalized push of agricultural product e-commerce information. This method analyzes user feedback information on e-commerce platforms in depth, distinguishes positive and negative dimensions, and extracts positive samples to further extract user preference features from the positive samples. Based on these preference characteristics, we conduct push ratings on agricultural products and generate personalized push lists for implementation on e-commerce platforms. The experimental results show that this method achieves a high push accuracy of not less than 0.8 on both MRR and HR evaluation indicators, effectively solving the shortcomings of existing push methods and realizing personalized and accurate push of agricultural product e-commerce information.
[1] | 谢梦怡. 基于近邻传播聚类的多源异构数据信息个性化推送方法[J]. 信息技术与信息化, 2024(7): 165-169. |
[2] | 张博君. 基于近邻传播聚类的电商商品信息个性化推送研究[J]. 中国信息界, 2024(2): 246-248. |
[3] | 王南. 基于云计算的短视频媒体资源个性化推送方法[J]. 兵工自动化, 2024, 43(2): 16-22. |
[4] | 张迅. 基于大数据平台的电力营销信息个性化推送方法[J]. 信息与电脑(理论版), 2023, 35(24): 97-99. |
[5] | 王珍, 许继平, 王小艺. 数字信息技术在个性化服装智能推送中的应用[J]. 丝网印刷, 2023(22): 93-95. |
[6] | 张志. 基于用户画像对互联网用户个性化推荐与引导[J]. 电脑编程技巧与维护, 2022(12): 155-158. |
[7] | 王金威. 基于大数据分析的高校云招聘信息个性化推送研究[J]. 安徽电子信息职业技术学院学报, 2022, 21(4): 25-31. |
[8] | 张莉. 基于用户画像的常德地区休闲农业信息个性化推荐系统研究[J]. 软件, 2022, 43(2): 1-3. |